Õª Òª
¡¡¡¡»ðÔÖ¾ßÓÐÍ»·¢ÐÔ¡¢ÆÆ»µ´ó¡¢ÄÑÒÔÆË¾ÈµÈÌØµã£¬ËùÒÔÏÖ´ú½¨ÖþÄÚ´ó¶àÆÌÉèÓиÐΡ¢¸ÐÑ̵ȴ«¸ÐÆ÷ÒÔ¾¡Ôç·¢ÏÖÒì³£Çé¿ö²¢Ó¦¶Ô¡£µ«°éËæ×ŹúÃñ¾¼ÃµÄѸËÙ·¢Õ¹£¬Éú»îºÍ¹¤ÒµÓûðÔ½·¢Æµ·±¡¢ÏÖ´ú½¨Öþ¼°µçÆøÉ豸¸ü¼Ó¸´ÔÓ£¬Ê¹µÃÏÖÓд«¸Ð¼ì²âÉ豸ԽÀ´Ô½ÄÑÒÔÓ¦¶ÔеÄÏû·ÀÐÎÊÆ£¬Òò´Ë£¬Ïû·ÀÎÊÌâÏÖÔÚ±äµÃÈÕÒæÑϾþ¡£Ôڴ˱³¾°Ï£¬±¾ÎÄ»ùÓÚ¼ÆËã»úÊÓ¾õ¼¼Êõ¶Ô»ðÔÖͼÏñÐÅÏ¢ÌáÈ¡¡¢»ðÔÖ¼ì²âºÍÔ¤¾¯ÎÊÌâ½øÐÐÁËÑо¿ºÍ¸Ä½ø£¬²¢»ùÓÚ´ËÑо¿´î½¨ÁËÒ»ÖÖÏû·Àϵͳ£¬×î´ó³Ì¶È¼õÉÙ»ðÔÖ´øÀ´µÄÍþв¡£±¾ÎÄÖ÷Òª¹¤×÷ÈçÏ£º
¡¡¡¡£¨1£©ÔÚ»ðÔÖ¼ì²âǰÀûÓà OpenCV ¹¤¾ß°ü¶ÔͼÏñÖеĻðÔÖÐÅÏ¢½øÐÐÌáÈ¡£¬Í¨¹ýÒÉËÆ»ðÔÖÇøÓòÌáÈ¡ºÍ»ðÔÖÌØÕ÷ÌáÈ¡£¬µÃµ½¿ÉÓÃÓÚ·ÖÀàµÄÊý¾Ý¼¯¡£ÆäÖУ¬Õë¶ÔÏÖÓÐ RGB »ðÑæÑÕɫģÐÍÒ×ÊÜÁÁ¶È¸ÉÈŵÄÎÊÌ⣬ÀûÓà HSV ºÍ YCbCr Ä£ÐÍ·ÖÀëÁÁ¶ÈºÍÑÕÉ«ÐÅÏ¢¶Ô»ðÔÖÑÕɫģÐ͹æÔò½øÐиĽø£¬²¢½áºÏÈ¥ÔëÔ¤´¦Àí¡¢GMM ÒÆ¶¯ÇøÓòÌáÈ¡ºÍÐÎ̬ѧ´¦ÀíʹÒÉËÆ»ðÔÖÇøÓòµÄÌáÈ¡¸ü¼Ó¾«×¼£»Í¨¹ý·ÖÎö»ðÔÖÊÓ¾õÌØÕ÷¼°Æä¶Ô¼ì²â½á¹ûµÄÓ°ÏìÌØµã£¬Ñ¡ÔñÁË¿¹¸ÉÈÅЧ¹ûºÃÇÒñîºÏСµÄÊÊÁ¿»ðÔÖÌØÕ÷½øÐÐÌáÈ¡·½·¨Éè¼Æ£¬ÌáÈ¡³öµÄ»ðÔÖÌØÕ÷ΪÏÂÒ»²½µÄ»ðÔÖ¼ì²âÌṩÁËÅжÏÒÀ¾Ý¡£
¡¡¡¡£¨2£©Õë¶ÔÏÖÓÐÊÓÆµ»ðÔÖ¼ì²âÑо¿ÖÐÖØÊÓ»ðÑæ¼ì²â¶øºöÊÓÑÌÎí¼°Òõȼ»ð¼ì²âµÄÎÊÌ⣬Éè¼ÆÁËÒ»ÖÖ»ùÓÚ SVM µ÷ÓÅÓëãÐÖµ·¨¸Ä½øµÄ»ðÑæºÍÑÌÎí²¢·¢¼ì²â·½·¨¡£Í¨¹ý¶Ô SVM ºËº¯ÊýÑ¡Ôñ¡¢Ä£ÐͲÎÊýµ÷ÓŲ¢ÑµÁ·ºóÓÃÓÚ»ðÑæµÄ¼ì²â£»Í¨¹ý¶Ô´«Í³ãÐÖµÅб𷽷¨½øÐиĽø£¬½â¾öÁËÆä·º»¯ÄÜÁ¦ÈõµÄȱµã£¬²¢ÓÃÓÚÑÌÎí¼ì²â£»Í¨¹ý¶ÔÏÖÓлðÔÖÔ¤¾¯»úÖÆÖдæÔÚÎÊÌâµÄ·ÖÎö£¬Ìá³öÁËÒ»ÖָĽøµÄ»ðÔÖÔ¤¾¯»úÖÆ¡£ÊµÑé±íÃ÷£¬ËùÌá»ðÔÖ¼ì²âËã·¨Äܹ»ÓÐЧÌáÉý¼ì²â׼ȷÂÊ¡¢½µµÍÎó±¨ÂʺͼõС·´Ó¦Ê±¼ä¡£
¡¡¡¡£¨3£©´î½¨ÁËÒ»ÖÖ»ùÓÚ¼ÆËã»úÊÓ¾õÓëÖÇÄÜС³µµÄÏû·ÀʵÑéϵͳ¡£¸ÃϵͳÓÉ»ðÔÖ¼ì²â¼°Ô¤¾¯ÏµÍ³ºÍ»ðÔÖÐͬ¾ÈԮƽ̨Á½¸ö×Óϵͳ¹¹³É£¬¹²Í¬ÊµÏÖ»ðÔÖ¼ì²â¡¢Ô¤¾¯ºÍ¾ÈÔ®¹¦ÄÜ¡£»ðÔÖ¼ì²â¼°Ô¤¾¯ÏµÍ³Óɼ¯³ÉÁË OpenCV µÄ C++ MFC ³ÌÐò¿ª·¢£¬¿ÉÒÔ¶ÔÊÓÆµ¼à¿ØÏÖ³¡ºÍ±¾µØÊÓÆµ½øÐÐʵʱ»ðÔÖ¼ì²â£¬³öÏÖ»ðÇéºó»áͬʱ½øÐмì²âºǫ́Ԥ¾¯ºÍÔ¶³Ì¶ÌÐÅÔ¤¾¯£»»ùÓÚÖÇÄÜС³µºÍAndriod App ʵÏֵĻðÔÖÐͬ¾ÈԮƽ̨¿ÉÓÉ»ðÔÖÖ¸»ÓÔ±ºÍ±»À§ÈËÔ±Ðͬµ÷Óã¬ÖÇÄÜС³µ´îÔØÐèÒªµÄÄ£¿é½øÈë»ðÔÖÏÖ³¡Íê³ÉÕì²ì¡¢¶¨Î»ºÍÔËËÍÎïÆ·µÈ¾ÈÔ®ÈÎÎñ£¬´Ó¶ø±£ÕÏÏû·ÀÔ±µÄ°²È«£¬Ìá¸ß¾ÈԮЧÂÊ¡£
¡¡¡¡¹Ø¼ü´Ê£º ¼ÆËã»úÊÓ¾õ£¬»ðÔÖ¼ì²â£¬»ðÔÖÔ¤¾¯£¬ÖÇÄÜС³µ
Abstract
¡¡¡¡Fire has the characteristics of suddenness, great damage, and difficult to extinguish. Therefore,most modern buildings are equipped with sensors such as temperature sensors and smoke sensors todetect and deal with abnormal conditions as soon as possible. However, with the rapid developmentof the national economy, fire is used more and more frequently in industry and life, modernbuildings and electrical equipments become more complex, these changes make the existing sensordetection equipment increasingly difficult to cope with the new fire situation. Therefore, the fireprotection problem is becoming increasingly severe. Under this background, based on the computervision technology, the problem of fire image information extraction, fire detection and earlywarning is studied and improved in this thesis, and based on this research, a fire-fighting system isbuilt to minimize the threat of fire. The main work of this thesis is as follows:
¡¡¡¡£¨1£© The OpenCV toolkit is used to extract the fire information in the image before the firedetection. Through the suspected fire area extraction and fire feature extraction, a data set can beused for classification is gotten. Aiming at the problem that the existing RGB flame color model iseasy to be interfered by brightness, the HSV and YCbCr models are used to separate the brightnessand color information, and the rules of the fire color model is improved. Improved flame colormodel combines denoising preprocessing, GMM moving area extraction and morphologicalprocessing to make extraction of the suspected fire area more accurate; by analyzing the visualcharacteristics of the fire and its influence on the detection results, an appropriate amount of firecharacteristics with good anti-interference effect and small coupling are selected for extractionmethod designing. The extracted fire features provide a basis for the fire detection later.
¡¡¡¡£¨2£© Aiming at the problem of the current video fire detection research that attaches importanceto flame detection but ignores smoke and smoldering fire detection, an improved flame and smokeconcurrent detection method is designed based on SVM tuning and threshold method. Through theSVM kernel function selection, model parameters optimization and training for SVM, it can be usedfor flame detection; through the improvement of the traditional threshold discrimination method, itcan solve the shortcoming of weak generalization ability and the improved method is used forsmoke detection; through the analysis of the existing problems in the fire early warning mechanism,an improved fire early warning mechanism is proposed. The experiment results show that the proposed fire detection algorithm can effectively improve the detection accuracy, reduce the falsealarm rate and reduce the response time.
¡¡¡¡£¨3£© A fire-fighting experiment system based on computer vision and intelligent trolleys is built.The system consists of two subsystems, the fire detection and early warning system and the firecooperative rescue platform, which together implement the fire detection, early warning and rescuefunctions. The fire detection and early warning system is developed by C ++ MFC programintegrated with OpenCV, which can perform real-time fire detection on the video surveillance siteand local video. After a fire occurs, it will perform detection background warning and remote SMSwarning at the same time; based on the smart car and Andriod App, the fire cooperative rescueplatform can be called by the fire commander and the trapped personnel. The smart car carries therequired modules to enter the fire scene to complete the rescue tasks such as reconnaissance,positioning, and delivery of goods, so as to ensure the safety of firefighters and improve theefficiency of rescue.
¡¡¡¡Key words: computer vision, fire detection, fire alarm, smart car
Ŀ¼
¡¡¡¡µÚÒ»Õ Ð÷ÂÛ
¡¡¡¡¿ÎÌâ±³¾°ÓëÒâÒåÔÚ¸÷ÖÖÔÖº¦ÖУ¬»ðÔÖÊÇÍþв¹«ÖÚ°²È«ºÍÉç»á·¢Õ¹µÄÖ÷ÒªÔÖº¦Ö®Ò»¡£Ëæ×ÅÎÒ¹ú¹úÃñ¾¼ÃµÄÌÚ·É£¬ÈËÃñÉú»îˮƽºÍ¹¤Òµ·¢Õ¹½øÈëÁ˸ßËÙ·¢Õ¹½×¶Î£¬ÔÚ¾ÓÃñÂ¥¡¢»¯¹¤³§ºÍ¹¤Òµ²Ö´¢µÈ»·¾³Ï£¬¸ßÃܶȵÄÉú»î¼°¹¤ÒµÓûðÓõçÐÐΪԽ·¢ÆÕ±é£¬µ«ÊÇÏû·À°²È«ÒâʶºÍÏû·ÀÉèÊ©µÄȱʧʹ»ðÔÖ¸øÈËÀàÉúÃüºÍ¾¼Ã·¢Õ¹´øÀ´µÄËðʧԽÀ´Ô½´ó¡£¸ù¾Ýͳ¼Æ£¬2007 ÄêÖÁ 2016 ÄêµÄ 10 ÄêÄÚ½Ó±¨µÄ¾ÍÓÐÔ¼ 1.1 ÍòÆð»ðÔÖʹʣ¬ÈËÔ±ËÀÍö 1.5 ÍòÓàÈË£¬Æ½¾ùÿÆð»ðÔÖÖÁÉÙÓÐ 1 ÈËËÀÍö£¬ÇÒÓÐÖð½¥À©´óµÄÇ÷ÊÆ[1].2003 ÄêÖÁ 2012 Äê¼äÒý·¢µÄ»ðÔÖʹÊÖ±½Ó´øÀ´ÁËÈËÃñ±Ò 48.5 ÒÚÔªµÄ²Æ²úËðʧ[2].
¡¡¡¡´ËÍ⣬¼´Ê¹µÈµ½Ïû·ÀÔ±µ½À´ºó£¬Ïû·ÀÔ±Ò²Êdz£³£ÔÚȱ·¦ÓÐЧÐÅÏ¢Ö§³ÖÏÂÖ±½Ó³åÈë»ð³¡£¬»ðÔÖÏÖ³¡¸´ÔÓÇÒΣÏÕµÄÇé¿ö¸ø³å´ÌÓÚÒ»ÏßµÄÏû·À¹Ù±ø´øÀ´ÁË×îÖ±½ÓµÄÉ˺¦ºÍÍþв¡£2005-2013 Äê¼ä£¬·¢ÉúÁË 70 ¶àÆðÏû·À¹Ù±øÉËÍöʹʣ¬Ö±½Óµ¼ÖÂÁË 85 ÈËËÀÍö£¬163 ÈËÊÜÉË[3].ÌØ±ðÊÇ 2015Äê"8·12"Ìì½ò±õº£ÐÂÇøÌØ´ó»ðÔÖ±¬Õ¨Ê¹ʣ¬¸ÃʹÊÖÐÓÐ 165 ÈËËÀÍö£¬Ïû·À¹Ù±øÕ¼µ½ÁË 67%µÄ±ÈÀý£¬Ö±½Ó¾¼ÃËðʧ¸ß´ïÈËÃñ±Ò 68.66 ÒÚÔª[4].
¡¡¡¡¿É¼û»ðÔÖÒ»µ©·¢Éú½«»á¸øÈËÀàÉúÃü¡¢²Æ²úÒÔ¼°¹ú¼Ò¾¼Ã´øÀ´²»¿É¹ÀÁ¿µÄËðʧ£¬ÎÒ¹úÏû·ÀÎÊÌâÊ®·ÖÑϾþ¡£¶ø»ðÔÖ·¢Éú¾ßÓÐͻȻÐԸߡ¢´«²¥¿ì¡¢Î£ÏÕÐÔ´ó¡¢ÄÑÆËÃðµÈÎÊÌ⣬Òò´Ë£¬Éè¼ÆÒ»Ì׿ɿ¿ÓÐЧµÄÏû·Àϵͳʮ·ÖÖØÒª¡£¸ÃϵͳҪÄܹ»¼°Ôç·¢ÏÖ»ðÔÖ£¬´ïµ½·À»¼ÓÚδȻµÄЧ¹û¡£
¡¡¡¡Èç¹û»ðÊÆÂûÑӳɻðÔÖ£¬Ôòºó¹û²»¿°ÉèÏë¡£Ïà±ÈÓÚʺ󲹾ȣ¬¼°Ê±·¢ÏÖ²¢Ó¦¶ÔÍùÍù¸ü¼ÓÖØÒª£¬ËùÒÔ»ðÔÖ¼ì²âÎÊÌâÒ»Ö±ÊÇѧÕßµÄÑо¿Èȵ㡣Ŀǰ£¬³ÇÊи÷Ö÷Òª½¨ÖþÎïÄÚʵ¼Ê²ÉÓõĻðÔÖ¼ì²â²úÆ·ÒÔµ¥µã´«¸ÐÆ÷ΪÖ÷£¬Èç¸Ðδ«¸ÐÆ÷¡¢¸ÐÑÌ´«¸ÐÆ÷£¬µ«ÕâЩÉ豸³£ÃæÁÙÊèÓÚά»¤¡¢ÆÌÉè³É±¾¸ß¡¢ÖеͶ˲úÆ·¿É¿¿ÐԵ͵ȿ͹ÛÏÖʵ£¬Æä̽²âЧ¹û³£³£ÄÑÒÔ´ïµ½ÈËÃÇµÄÆÚÍû[5].ÓÉÓÚ´«¸ÐÆ÷ÖÜΧµÄζȻòÑÌÎíŨ¶È´ïµ½Ò»¶¨ãÐÖµ²Å»á´¥·¢¾¯±¨£¬Òò´Ë·´Ó¦½ÏÂý[6].´ËÍ⣬ÕâÀà´«¸ÐÆ÷ÔÚÊÒÍâ»ò²Ö¿â¡¢ÌåÓý³¡µÈ¿Õ¿õ³¡ËùÒ×ÊÜ¿Õ¼ä¼°ÆøÁ÷Ó°Ï죬ºÜÄÑ´ïµ½É趨µÄãÐÖµ£¬²¢²»ÄÜÆðµ½Á¼ºÃµÄ¼ì²âЧ¹û¡£¶øËæ×ÅÊÓÆµ¼à¿ØÔÚ´ó½ÖСÏïÆÕ¼°¡¢¼ÆËã»úÐÔÄܼ°Í¼Ïñ´¦Àí¼¼ÊõµÄѸÃÍ·¢Õ¹£¬»ùÓÚ¼ÆËã»úÊÓ¾õ¼¼Êõ¼ì²â»ðÔֵķ½·¨²»½ö¼ì²âËٶȸü¿ì£¬¶øÇÒ²»»áÊܵ½Î¶ȡ¢ÆøÁ÷µÈ»·¾³ÒòËØ¸ÉÈÅ£¬ÁíÍâÒ²¿ÉÒÔ¼õÉÙ´«¸ÐÉ豸ÆÌÉèµÄ¶îÍâ³É±¾£¬³ÉΪÁË»ðÔÖ¼ì²â¿ÎÌâеÄÑо¿Èȵã[7].
¡¡¡¡»ðÔÖ¾ÈÔ®ÊֶαȽϷḻ£¬ÆäÖÐÄÜÉîÈë»ð³¡ÊµÏÖÔ¶³Ì¾ÈÔ®µÄÖ»ÓÐÖÇÄÜÏû·À»úÆ÷ÈËϵͳ¡£ÀûÓûúÆ÷ÈËÌØ±ðÊÇÖÇÄÜС³µÆ½Ì¨µÄ»ú¶¯ÄÜÁ¦£¬Í¨¹ý WiFi¡¢4G µÈÎÞÏßͨÐÅ·½Ê½¼°ÖÇÄÜС³µ¿É±à³Ì¿ØÖÆ£¬¿ÉÒÔʵÏÖÖÇÄÜС³µÔ¶¾àÀë²Ù¿Ø£¬´úÌæÏû·ÀÈËÔ±½øÈë°éÓÐŨÑÌ¡¢¶¾Æø¡¢±¬Õ¨µÈΣÏյĻðÔÖÏÖ³¡¡£¶øÔÚ¸ÃÆ½Ì¨ÉÏ´îÔØ¸÷Àà´«¸ÐÆ÷¡¢ÉãÏñÍ·¡¢¶¨Î»É豸µÈ¿É½«»ðÔÖÏÖ³¡ÐÅϢʵʱµØ´«µÝ»Øºǫ́£¬Îª¿ÆÑ§¸ßЧµÄ¾ÈÔ®Ìṩ±ãÀû£¬Òò¶øÖÇÄÜС³µ¾ÈԮϵͳ¾ßÓжÀÒ»ÎÞ¶þµÄÓÅÊÆ£¬Ïû·À»úÆ÷È˵ÄÑо¿¶Ô½µµÍÉúÃü²Æ²úËðʧ¾ßÓÐÖ¸µ¼×÷ÓÃ[8].
¡¡¡¡³ýÁË»úÆ÷ÊÓ¾õºÍÖÇÄÜС³µ¼¼ÊõÍ⣬ǶÈëʽ¡¢ÎÞÏßͨÐÅ¡¢´«¸ÐÍøÂç¡¢ÊÒÄÚ¶¨Î»µÈ¼¼ÊõÒ²ÔÚ·ÉËÙ·¢Õ¹£¬ÈÚºÏÀûÓÃ×îм¼Êõ¿ª·¢³É¹û£¬Ñо¿ÊÓÆµ»ðÔÖ¼ì²â¡¢Ô¤¾¯ºÍ¾ÈÔ®Ïà¹ØÀíÂÛ£¬Éè¼ÆÊµÏÖÒ»ÖÖ¿ÉÊÓ»¯¿É²Ù×÷µÄÖÇÄÜÏû·Àϵͳ£¬¶Ô»ðÔÖ¼°Ê±·¢ÏÖ£¬¼°Ê±Ô¤¾¯£¬¼°Ê±¾ÈÔ®£¬×î´ó³Ì¶È½ÏÉÙ»ðÔÖµÄÍþв£¬¾ßÓÐÖØÒªµÄÀíÂÛÒâÒåºÍDZÔÚÓ¦ÓüÛÖµ¡£
¡¡¡¡1.2¹úÄÚÍâÑо¿ÏÖ×´
¡¡¡¡1.2.1 ÊÓÆµ»ðÔÖ¼ì²â¼¼Êõ
¡¡¡¡½üÄêÀ´¹úÄÚÍâ°²·ÀÊг¡²»¶ÏÀ©´ó£¬»ùÓÚ½¨ÖþÄÚÍâ±é²¼µÄ¼à¿ØÉãÏñÍ·Ìṩ¸ü¶àµÄÖÇÄÜ·þÎñ³ÉΪ¿ÉÄÜ£¬ÔÚ´Ë»ù´¡ÉÏÔ½À´Ô½¶àµÄÖǻ۳ÇÊС¢Öǻ۽»Í¨¡¢Öǻ۰²·Àϵͳ±»Â½Ðø·õ»¯³öÀ´£¬ÕâЩÏîĿҲ½øÒ»²½¹®¹ÌºÍ·¢Õ¹Á˰²·À²úÆ·µÄÓÅÊÆ[9].ÁíÒ»·½Ã棬»ùÓÚ´«¸ÐÆ÷µÄ»ðÔÖ¼ì²âϵͳÔÚ½üÄêµÄ»ðÔÖʹÊÖб©Â¶³ö·´Ó¦Âý¡¢¿É¿¿ÐÔ²îµÈÎÊÌ⣬ÄÑÒÔÊÊÓ¦ÏÖ´ú³ÇÊз¢Õ¹¶ÔÏû·À°²È«µÄÒªÇó£¬Òò¶ø£¬ÔÚÏÖÓÐÊÓÆµ¼à¿ØÏµÍ³»ù´¡ÉÏÈںϼÆËã»úÊÓ¾õ¼¼ÊõʵÏÖ»ðÔÖ¼ì²â³ÉΪеÄÍ»ÆÆ¿Ú¡£
¡¡¡¡¼ÆËã»úÊÓ¾õ¼¼Êõͨ¹ýÉãÏñÍ·½«¼à¿Ø¶ÔÏóÉú³ÉͼÏñÐźţ¬ÀûÓÃͼÏñ´¦ÀíºÍͼÏñ¼ì²â¼¼Êõ¶ÔÕâЩÐźŽøÐи÷ÖÖÔËËãºÍÌØÕ÷ÌáÈ¡£¬½ø¶ø´úÌæÈËÑÛÅбð¼à¿Ø¶ÔÏóÐÐΪ¡£µ±ÎïÌåȼÉÕʱ»ðÑæ»á±íÏÖ³öÒ»¶¨µÄÑÕÉ«¡¢Ô˶¯ÐÎ̬µÈÌØÕ÷£¬Í¨¹ý¹âµÄ´«²¥£¬ÕâÐ©ÌØÕ÷µÃÒÔ±»ÉãÏñ»ú²¶×½£¬ÕâÐ©ÌØÐÔÒ²¾Í³ÉÁË»ùÓÚÊÓÆµÊ¶±ð»ðÔÖµÄÒÀ¾Ý£¬Ëü²»»á´«¸ÐÆ÷ÄÇÑùÊܵ½¿Õ¼ä¡¢Êª¶È¡¢·Û³¾¡¢Î¶ȵȻ·¾³µÄÓ°Ï죬¸üÄÜÊÊÓ¦¸´ÔӵĻ·¾³Ìõ¼þ£¬Ìá¸ß¼ì²âЧÂÊ£¬Éú³ÉµÄͼÏñÐÅÏ¢Ò²¸üΪÈËÀàÊÓ¾õËùÖ±¹ÛµØ½ÓÊÜ[10].
¡¡¡¡Ä¿Ç°ÊÓÆµ»ðÔÖ¼ì²â·½·¨Í¨³£ÒÔ»ðÔÖÌØÕ÷µÄÌáȡΪץÊÖ£¬½ø¶øÍ¨¹ýÉèÖÃãÐÖµ¡¢»úÆ÷ѧϰ¡¢Éî¶ÈѧϰµÈ·½·¨ÈÚºÏÅжÏÕâÐ©ÌØÕ÷ÏÂÊÇ·ñ´æÔÚ»ðÔÖ£¬ÆäÖг£ÓÃÀ´ÌáȡͼÏñÖлðÔÖÏñËØµÄÅжÏÒÀ¾ÝÓÐÑÕÉ«¡¢ÎÆÀí¡¢Ô˶¯¹æÂÉ¡¢Ôö³¤¹æÂɵȡ£Li µÈ[11]Ìá³öÁËÒ»¸ö»ùÓÚ CLG-TV ¹âÁ÷Ä£ÐͶԹâÁ÷·¨½øÐиĽøµÄ»ðÑæÅжÏÒÀ¾Ý¡£De µÈ[12]ΪӦ¶ÔÊÒÄÚ»ðÔÖÉè¼ÆÁËÒ»¸ö»ðÔÖÔçÆÚÔ¤¾¯´«¸ÐÆ÷¡£JiµÈÈË[13]Éè¼ÆÁËÒ»¸ö»ùÓÚ GMHI ǰ¾°ÌáÈ¡¼°Òƶ¯¡¢ÑÕÉ«¡¢ÉÁ˸¡¢ÎÆÀí¡¢ÂÖÀªµÈ¶àÌØÕ÷ SVM µÄ»ðÔÖ¼ì²âËã·¨£¬ÔÚ׼ȷÂʺÍʵʱÐÔÉ϶¼»ñµÃÁ˺ܴóµÄÌáÉý¡£Muhammad µÈ[14]Éè¼ÆÁËÒ»¸ö»ùÓڸĽø CNN µÄ»ðÔÖ¼ì²âËã·¨£¬ÔÚ¼ÆËãʱ¼äºÍÄÚ´æÕ¼ÓÃÉÏ»ñµÃÁËÌáÉý¡£Muhammad µÈ[15]ÊÜSqueezeNet ¼Ü¹¹Æô·¢£¬ºóÐøÓÖÉè¼ÆÁËÒ»ÖÖ½ÚÄÜ£¬¸ÄÉÆ¼ÆËãЧÂ浀 CNN ¼Ü¹¹£¬ÓÃÓÚ»ðÔÖ¼ì²âºÍ¶¨Î»¡£Tian µÈ[16]´ÓÑÕÉ«¡¢ÂÖÀª¡¢Òƶ¯µÈÌØÕ÷¼ì²âÑÌÎíµÄ½Ç¶ÈʵÏÖ»ðÔÖÔçÆÚ¼ì²â¡£Hong[17]µÈÀûÓÃÔ²¶È·ÖÎö¡¢Èñ½Çͳ¼ÆºÍͼÏñ²î·ÖµÈ¼¼ÊõʵÏÖ»ðÔÖ¼ì²â²¢½áºÏÊÓ¾õ¶¨Î»¼¼ÊõÕÒ³ö»ðÔÖλÖúóÓÃË®ÅÝÃð»ðµÄǶÈëʽϵͳ¡£He µÈ[18]ÔÚ ViBe Ëã·¨ÌáÈ¡Ô˶¯ÇøÓòµÄ»ù´¡ÉÏʹÓà RGB-HIS ÑÕɫģÐͼì²â»ðÔÖ£¬²¢Õë¶Ô¹â·üϵͳ»·¾³ÏÂÉϽøÐÐÁËʵÑ飬ÑéÖ¤ÁËÁ¼ºÃµÄ³°ôÐÔ¡£Khan µÈÈË[19]Éè¼Æ²¢ÊµÏÖÁËÒ»ÖÖÀûÓà RGB-LAB ÑÕɫģÐÍÔÚÊ÷Ý®ÅÉÉÏʵʱ¼ì²â»ðÔÖ²¢ÔÚ Android ϵͳÉÏÔ¶³Ì±¨¾¯µÄÏû·ÀÔ¤¾¯ÏµÍ³¡£
¡¡¡¡Ä¿Ç°ÊÓÆµ»ðÔÖ¼ì²â¼°Ô¤¾¯²úÆ·ÉÏ£¬¹úÍâÅ·ÃÀ¡¢ÈÕ±¾µÈµØÇøµÄ¹«Ë¾·¢Á¦µÄ¸üÔ磬ҲÓкܶà²úÆ·ÍÆ³ö£¬±ÈÈç axon X-LLC ¹«Ë¾»ðÔÖ¼ì²âÔ¤¾¯²úÆ·µÄ signifire ϵÁпÉÒÔ¶Ô»ðÑæ¼°ÑÌÎí½øÐмì²â£¬²¢¶ÔÑÌÎíŨ¶ÈµÈ½øÐмì²â£¬¾ßÓп¹ÈÅÄÜÁ¦Ç¿£¬ÊÊÓÃÃæ¹ãµÄÌØµã[20],SONY,»ôÄáΤ¶û°²·ÀµÈÒ²¶¼ÓÐÊÓÆµ»ðÔÖ¼ì²âÔ¤¾¯²úÆ·ÍÆ³ö¡£¹úÄÚ°²·ÀÆóÒµ½øÈë¸ÃÁìÓòÏà¶Ô½ÏÍí£¬µ«HIKVISION,´ó»ªºÍ»ªÎªµÈΪ´ú±íµÄ¹«Ë¾Ò²ÔÚÊÓÆµÖÇ»ÛÏû·ÀÁìÓò½øÐÐÁ˽ϴóµÄͶÈëÑо¿£¬ÇÒ¹úÄÚÊг¡Ä¿Ç°ÈÔÓкܴóµÄ¿ª·¢¿Õ¼ä[21,22].
¡¡¡¡1.2.2 »ðÔÖ¾ÈÔ®»úÆ÷È˼¼Êõ
¡¡¡¡ÔÚ»ðÔÖ¾ÈÔ®»úÆ÷È˼¼Êõ·½Ã棬ËäÈ»¹úÄÚ½ø²½Ñ¸ËÙ£¬µ«Å·ÖÞ¡¢ÃÀ¹úºÍÈÕ±¾×ÜÌåÈÔ´¦ÓÚÁìÏȵØÎ»[23-25].Ϊ´ú±íµÄÃÀ¹ú Howe and Howe ¹«Ë¾ Thermite RS1-T2 µÄ»ðÔÖ¾ÈÔ®»úÆ÷È˲ÉÓýðÊôÂÄ´øÊ½Éè¼Æ£¬¿ÉÒÔͨ¹ý¸´ÔӵĻðÔÖÏÖ³¡£¬Êä³öÓÐ 18.64 ǧÍߵIJñÓÍ»ú¿ÉÎª×°ÔØÅçÉäˮǹ¡¢»úеÊÖ¼°×ÔÉí³µÖØÌṩ×ã¹»µÄ¶¯Á¦£¬²»ÓÃÏû·ÀÔ±½øÈë»ðÔÖÒ»Ïß±ã¿ÉÍê³ÉÕì²é¡¢»úеÊÖ±Û¾ÈÔ®¡¢ÅçË®Ãð»ðµÈÏû·ÀÈÎÎñ¡£ÎÒ¹úÔÚ 1995 ÄêÓÉÉϺ£½»Í¨´óѧµÈ»ú¹¹ÑÐÖÆ³ÉµÚÒ»¸ö»ðÔÖ¾ÈÔ®»úÆ÷ÈËÒÔÀ´£¬Â½Ðø³öÏÖÁ˶à¸öרҵÑо¿»ú¹¹ÔÚÏû·À»úÆ÷ÈËÁìÓò¼ÌÐøÍêÉÆ[26,27].2010 Ä깫°²²¿Öƶ¨²¢·¢²¼ÁËÏû·À»úÆ÷È˱ê×¼ GA892.1-2010¡¶Ïû·À»úÆ÷ÈËµÚ 1 ²¿·Ö£ºÍ¨Óü¼ÊõÌõ¼þ¡·£¬¶ÔÐÐÒµ·¢Õ¹Æðµ½Á˹淶Óë´Ù½ø×÷ÓÃ[28].ÂåÑôÖÐÐÅÖØ¹¤¿ª·¢µÄ»ðÔÖ¾ÈÔ®»úÆ÷È˲ÉÓÃÁËÂÄ´øÊ½Éè¼Æ£¬³µÉí´îÔØÁ˸÷Àà´«¸ÐÆ÷¡¢Ò£¿Ø¶àÏòÅçÉäË®ÅÝ¡¢360 ¶ÈÉãÏñÍ·µÈ£¬¿ÉÒÔÍê³ÉÔËÊä¡¢¾ÈÖú¡¢Ãð»ðµÈ¹¤×÷£¬Ð¯´øµÄ¸÷Àà´«¸ÐÆ÷¿ÉÒԲɼ¯ÏÖ³¡»·¾³ÐÅÏ¢´«µÝ¸øºǫ́ϵͳ²¢ÏÔʾ£¬ÎªÖ¸»ÓÖÐÐÄÖ¸¶¨¿ÆÑ§¾ÈÔ®¼Æ»®Ìṩ֧³Ö£¬±£ÕÏÁËÏû·ÀÔ±ÉúÃü°²È«¡£
¡¡¡¡1.3Ñо¿ÄÚÈÝÓëÕ½ڰ²ÅÅ
¡¡¡¡1.3.1 Ñо¿Ä¿±ê
¡¡¡¡Ïû·À°²È«ÊǸöϵͳÐÔÎÊÌ⣬µ«Ïà±ÈÓÚʺóÃÖ²¹£¬·À·¶ÓÚδȻÍùÍù¸ü¼ÓÖØÒª£¬Ö»ÓжԻðÇ鼰ʱ¼ì²â²¢¿ØÖÆ£¬ÈËÀàÉúÃü¼°²Æ²ú²ÅÄܵõ½×î´ó³Ì¶ÈµÄ±£»¤¡£µ«Ä¿Ç°¹ã·º²ÉÓõĸÐΡ¢¸ÐÑÌÀ൥µã´«¸ÐÆ÷´æÔÚÁ½·½ÃæÎÊÌ⣬һÊÇÖ»ÓÐÔÚÆäÖÜΧµÄζȻòÑÌÎíŨ¶È´ïµ½Ò»¶¨ãÐÖµ²Å»á´¥·¢¾¯±¨£¬·´Ó¦½ÏÂý[29];¶þÊÇÔÚÊÒÍâ»ò²Ö¿â¡¢ÌåÓý³¡µÈ¿Õ¿õ³¡ËùÒ×ÊÜ¿Õ¼ä¼°ÆøÁ÷Ó°Ï죬ËùÒÔ²¢²»ÄÜÆðµ½Á¼ºÃµÄ¼ì²âЧ¹û¡£ÁíÒ»·½Ã棬ÊÓÆµ¼à¿ØµÄÆÕ¼°¡¢¼ÆËã»úÐÔÄܼ°Í¼Ïñ´¦Àí¼¼ÊõµÄѸÃÍ·¢Õ¹ÎªÊÓÆµ»ðÔÖ¼ì²âÌṩÁËÁ¼ºÃ»ù´¡¡£²ÉÓÃÊÓÆµ¼ì²â»ðÔֵķ½·¨¼ì²âËٶȸü¿ì£¬ÌṩµÄÐÅÏ¢¸ü¼ÓÖ±¹Û׼ȷ£¬²»»áÊܵ½Î¶ȡ¢ÆøÁ÷µÈ»·¾³ÒòËØ¸ÉÈÅ£¬ÁíÍâÒ²¿ÉÒÔ¼õÉÙ´«¸ÐÉ豸ÆÌÉèµÄ¶îÍâ³É±¾[30].ÔÚÊÓÆµ»ðÔÖ¼ì²âÑо¿ÖУ¬»ðÑæ×÷Ϊ»ðÔÖ×îÃ÷ÏÔÒ²ÊÇ×î³£¼ûµÄ±íÏÖÐÎʽ¶ø±»Ñ§Õ߹㷺Ñо¿£¬µ«ÊÇÑÌÎíÏÈÓÚ»ðÑæ³öÏÖµÄÌØµã¼°²¿·ÖÒõȼ»ðµÄÇé¿ö³£±»ºöÂÔ¡£ËùÒÔ±¾ÎÄÐèÒªÉè¼ÆÒ»Ì×»ùÓÚ¼ÆËã»úÊÓ¾õµÄ»ðÔÖ¼ì²âËã·¨£¬¸ÃËã·¨¿Éͬʱ¼ì²â»ðÑæ¼°ÑÌÎí£¬×îºóʵÏÖ»ðÔÖÔ¤¾¯¡£
¡¡¡¡1.3.2 Ñо¿ÄÚÈÝ
¡¡¡¡±¾ÎÄÖ÷Òª¶ÔÏû·ÀϵͳÖлðÔÖ¼ì²âºÍÔ¤¾¯Õ¹¿ªÑо¿¡£ÔÚ¼ÆËã»úÊÓ¾õÓëͼÏñ´¦Àí¼¼ÊõµÄ»ù´¡ÉÏ£¬¶Ô»ðÔÖÊÓ¾õÌØÕ÷½øÐзÖÎö£¬Í¨¹ý¸Ä½øÑÕɫģÐ͵ȷ½·¨Íê³É»ðÔÖÐÅÏ¢´¦Àí¼°ÌØÕ÷´¦Àí£¬ÌáÉýÁË»ðÔÖ¼ì²âÒÀ¾ÝµÄ׼ȷÐÔ¡£¶Ô SVM ½øÐе÷ÓŲ¢¸Ä½øãÐÖµÅб𷨣¬´Ó»ðÑæ¼ì²âºÍÑÌÎí¼ì²âÁ½¸ö·½Ãæ¸Ä½ø»ðÔÖ¼ì²âËã·¨£¬ÌáÉýÁ˼ì²â׼ȷÂÊ£¬½µµÍÁËÎó±¨Âʺͷ´Ó¦Ê±¼ä¡£Í¬Ê±Õë¶Ô»ðÔÖÔ¤¾¯»úÖÆµÄÎÊÌâÌá³öÁ˸Ľø·½·¨¡£×îºó£¬Ê¹ÓüÆËã»úÊÓ¾õºÍÖÇÄÜС³µ¼¼ÊõÍê³ÉÏû·ÀϵͳµÄʵÏÖ£¬¶ÔÉÏÊöÀíÂÛÑо¿½øÐÐÓ¦ÓÃÑéÖ¤¡£
¡¡¡¡±¾ÎÄÖ÷ÒªÑо¿ÄÚÈÝ¿É×ܽáΪÒÔϼ¸¸ö·½Ã棺
¡¡¡¡£¨1£©Í¨¹ýµ÷ÑнüÄêÏû·À°²È«Ê¼þÓë·¢Õ¹ÏÖ×´£¬Ã÷È·ÁËÏû·ÀϵͳµÄÑо¿ÒâÒåºÍ±¾ÎĶÔÏû·ÀϵͳÑо¿µÄÖØµã¡£
¡¡¡¡£¨2£©Ïêϸ½éÉÜÁËÏû·ÀϵͳÑо¿ÓëʵÏÖʹÓõ½µÄÏà¹ØÀíÂÛÓë¼¼Êõ£¬ÎªºóÐøÑо¿¹¤×÷´òÏ»ù´¡¡£
¡¡¡¡£¨3£©ÓÉÓÚͼÏñ²»ÄÜÖ±½ÓÓÃÓÚ·ÖÀ࣬ÐèÒªÀûÓà OpenCV ¹¤¾ß°üÏȶÔͼÏñÖеĻðÔÖÐÅÏ¢½øÐÐÌáÈ¡ºó²ÅÄܵõ½ÓÃÓÚ·ÖÀàµÄÊý¾Ý¼¯£¬»ðÔÖÐÅÏ¢ÌáÈ¡Ñо¿°üÀ¨ÁËÒÉËÆ»ðÔÖÇøÓòÌáÈ¡ºÍ»ðÔÖÌØÕ÷ÌáÈ¡Á½²¿·Ö·½·¨µÄÉè¼Æ¡£½«»ðÔÖÐÅÏ¢·ÖΪ»ðÑæºÍÑÌÎíÁ½¸ö²¿·Ö£¬ÔÚͼÏñ´¦Àí¼¼Êõ»ù´¡ÉÏ£¬Éè¼ÆÁËÒÉËÆ»ðÔÖÇøÓòµÄÌáÈ¡·½·¨£¬Õë¶ÔÏÖÓÐ RGB »ðÑæÑÕɫģÐÍÒ×ÊÜÁÁ¶È¸ÉÈŵÄÎÊÌâ½øÐÐÁË¸Ä ½ø¡£·ÖÎö»ðÔÖÊÓ¾õÌØÕ÷¼°ÌØÕ÷¶Ô¼ì²â½á¹ûµÄÓ°ÏìÌØµã£¬»ùÓÚÒÉËÆ»ðÔÖÇøÓòÉè¼ÆÁË»ðÑæºÍÑÌÎíµÄÌØÕ÷ÌáÈ¡·½·¨£¬´Ó¶øÎªÏÂÒ»²½µÄ»ðÔÖ¼ì²âÌṩ¸ü¼Ó׼ȷµÄÅжÏÒÀ¾Ý¡£
¡¡¡¡£¨4£©ÒÀ¾Ý»ðÔÖÌØÕ÷ÌáÈ¡µ½µÄÊý¾Ý¼¯£¬×ÛºÏÅбð»ðÑæºÍÑÌÎíµÄ¼ì²â½á¹ûºó½øÐлðÔÖÔ¤¾¯¡£
¡¡¡¡¶ÔÖ§³ÖÏòÁ¿»úÀíÂÛÑо¿ºó£¬Ñ¡ÔñºÏÊʵĺ˺¯Êý£¬ÔÚ²ÉÓÃÁ˽»²æÑéÖ¤ºÍÍø¸ñËÑË÷·¨µÄ LIBSVMÈí¼þ°üÏÂÍê³É SVM Ä£Ð͵÷Óźͽ¨Á¢£¬¶Ô»ðÑæÍ¼Ïñ½øÐзÖÀà¡£Õë¶ÔãÐÖµ·¨µÄ·º»¯ÄÜÁ¦²îµÄÎÊÌâÌá³öÁ˸Ľø·½·¨£¬ÓÃÓÚÑÌÎíͼÏñ·ÖÀà¡£·ÖÎöÁËÒÔÍùÑо¿ÖÐÔ¤¾¯»úÖÆ´æÔÚµÄÎÊÌâ²¢½øÐиĽø¡£
¡¡¡¡ÊµÑé±íÃ÷£¬ËùÌá»ðÔÖ¼ì²âËã·¨Äܹ»ÓÐЧÌáÉý¼ì²â׼ȷÂÊ¡¢½µµÍÎó±¨ÂʺͼõС·´Ó¦Ê±¼ä¡£
¡¡¡¡£¨5£©´î½¨ÁËÒ»Ì×»ùÓÚ¼ÆËã»úÊÓ¾õÓëÖÇÄÜС³µµÄÏû·ÀʵÑéϵͳ¡£¸ÃϵͳÓÃÓÚÓ¦ÓòãÃæÉÏÑéÖ¤»ðÔÖÐÅÏ¢´¦Àí¡¢¼ì²â¡¢Ô¤¾¯ºÍ¾ÈÔ®µÄʵ¼ÊЧ¹û¡£ÏȶԸÃÏû·Àϵͳ½øÐÐÕûÌå¼Ü¹¹Éè¼Æ£¬ÔÙ¶Ô»ùÓÚ¼ÆËã»úÊÓ¾õµÄ»ðÔÖ¼ì²â¼°Ô¤¾¯ÏµÍ³ºÍ»ùÓÚÖÇÄÜС³µµÄ»ðÔÖÐͬ¾ÈԮƽ̨Á½¸ö×Óϵͳ·Ö±ðÓڼܹ¹Éè¼Æ¡¢Ó²¼þʵÏÖ¡¢Èí¼þʵÏֺ͹¦ÄܲâÊÔËĸö·½Ãæ½øÐвûÊöϵͳʵÏÖ¹ý³ÌºÍЧ¹û£¬×îºó¶Ô¸÷¹¦ÄÜÄ£¿é½øÐÐÕë¶ÔÐÔ²âÊÔ¡£
¡¡¡¡1.3.3 Õ½ڰ²ÅÅ
¡¡¡¡±¾ÎĶÔÊÓÆµ»ðÔÖÐÅÏ¢´¦Àí¼°ÌØÕ÷ÌáÈ¡¡¢»ðÔÖ¼ì²â¼°Ô¤¾¯Á½¸öÎÊÌâ·Ö±ðÔÚµÚÈýºÍµÚËÄÕ½ÚÖнøÐÐÑо¿£¬È»ºóÔÚµÚÎåÕÂÖпª·¢ÁËÒ»ÖÖÏû·Àϵͳ¶ÔǰÁ½ÕµÄÀíÂÛÑо¿ÔÚÓ¦ÓòãÃæÉϽøÐÐʵÏÖ£¬¸Ãϵͳ²»½öÌáÉýÁË»ðÔÖ¼ì²âÐÔÄÜ£¬½â¾öÁËÒÔÍù»ðÔÖÔ¤¾¯ÖеÄÎÊÌ⣬Ҳ¿ÉÒÔ´úÌæÏû·ÀÔ±½øÈë»ðÔÖÏÖ³¡£¬Ìṩ¿É·þÎñÓÚ¶àÈ˵Ķ๦ÄÜͨÓôîÔØÆ½Ì¨¡£
¡¡¡¡±¾ÎÄ·ÖΪÁùÕ£¬Õ½ڽṹ°²ÅÅÈçͼ 1.1 Ëùʾ£¬¾ßÌåÃèÊöÈçÏ£º
¡¡¡¡µÚÒ»ÕÂÖ÷Òª½éÉÜÁËÏû·ÀϵͳµÄ¿ÎÌâ±³¾°¼°ÒâÒå¡¢Ñо¿ÏÖ×´¡¢±¾ÎĵÄÑо¿ÄÚÈÝÓëÕ½ڰ²ÅÅ¡£
¡¡¡¡µÚ¶þÕ½éÉÜÁËÏû·ÀϵͳÑо¿Éæ¼°µ½µÄÏà¹ØÀíÂÛÓë¼¼Êõ£¬ÎªÏÂÎĽøÒ»²½Ñо¿Ìṩ»ù´¡¡£±¾Õ°üÀ¨¼ÆËã»úÊÓ¾õ¡¢Ö§³ÖÏòÁ¿»ú¡¢ÖÇÄÜС³µºÍ Android ¼¼ÊõÏà¹ØÖªÊ¶¡£
¡¡¡¡µÚÈýÕÂÏêϸÑо¿ÁËÊÓÆµ»ðÔÖÐÅÏ¢ÌáÈ¡µÄ·½·¨¡£ÔÚ¼ÆËã»úÊÓ¾õºÍͼÏñ´¦Àí¼¼Êõ»ù´¡ÉÏ£¬Ê¹Óà OpenCV ÔÚÈ¥ÔëÔ¤´¦Àí¡¢GMM Ëã·¨ÌáÈ¡ÒÆ¶¯ÇøÓò¡¢¸Ä½ø»ðÔÖÑÕɫģÐͺÍÐÎ̬ѧ´¦ÀíËĸö·½Ãæ½øÐÐͼÏñ´¦ÀíÑо¿£¬²¢µÃµ½ÒÉËÆ»ðÔÖÇøÓò£¬¸ÄÉÆÁ˺óÐøÌØÕ÷ÌáÈ¡µÄ׼ȷ¶ÈºÍ¼ÆËãÁ¿£»È»ºóÓÖ´ÓÌØÕ÷ÊýÁ¿¡¢ÌØÕ÷¼ä¹ØÏµ¶Ô»ðÔÖ¼ì²âÐÔÄܵÄÓ°Ï죬ѡÔñÁ˺ÏÊÊÊýÁ¿µÄ¿¹¸ÉÈÅÄÜÓÅÐãµÄ»ðÔÖÌØÕ÷£¬²¢¶ÔÕâÐ©ÌØÕ÷ÌáÈ¡·½·¨½øÐмò±ã»¯Éè¼ÆÒÔ½µµÍ×ÜÌ弯ËãÁ¿£»×îºó£¬ÓÃʵÑéÑéÖ¤¸÷½×¶ÎµÄÉè¼ÆÐ§¹û£¬ÎªÏÂÒ»²½»ðÔÖÅбðÌṩÁË׼ȷÒÀ¾Ý¡£
¡¡¡¡µÚËÄÕÂÏêϸÑо¿ÁË»ðÔÖÈÚºÏÅбð¼°Ô¤¾¯µÄ¹ý³Ì¡£¾ßÌåΪ£¬Í¨¹ý¶Ô SVM ºËº¯ÊýÑ¡ÔñºÍ²ÎÊýµ÷ÓŽ¨Á¢·ÖÀàÄ£Ðͼì²â»ðÑæ£»¶Ô´«Í³ãÐÖµ·¨·º»¯ÄÜÁ¦ÈõµÄÎÊÌâ½øÐиĽø£¬ÌáÉýÑÌÎí¼ì²âÄÜÁ¦£»¶ÔÏÖÓлðÔÖÔ¤¾¯»úÖÆÖдæÔÚ½«»ðÇéµÈͬÓÚ»ðÔÖ½øÐÐÒ»µ¶ÇÐÔ¤¾¯µÄÎÊÌâ½øÐÐÁ˸Ľø£»×îºó£¬»ùÓÚ LIBSVM µÈÈí¼þ¹¤¾ßÑéÖ¤ÁË»ðÔÖ¼ì²âËã·¨ÔÚ׼ȷÂÊ¡¢Îó±¨Âʺͷ´Ó¦Ê±¼äÈý¸ö·½ÃæÓÅÐãµÄ±íÏÖ¡£
¡¡¡¡µÚÎåÕÂÖ÷Òª½²ÊöÁË»ùÓÚ¼ÆËã»úÊÓ¾õºÍÖÇÄÜС³µµÄÏû·ÀϵͳʵÏÖ¹ý³Ì¡£ÏȶÔÏû·Àϵͳ½øÐÐÕûÌå¼Ü¹¹Éè¼Æ£¬ÔÙ·Ö±ð¶Ô»ùÓÚ¼ÆËã»úÊÓ¾õµÄ»ðÔÖ¼ì²â¼°Ô¤¾¯ÏµÍ³ºÍ»ùÓÚÖÇÄÜС³µµÄ»ðÔÖÐͬ¾ÈԮƽ̨Á½¸ö×ÓϵͳµÄ¼Ü¹¹½øÐÐÉè¼Æ£¬²¢°´Èí¼þºÍÓ²¼þÁ½¸ö·½Ãæ²ûÊöÁË×Óϵͳ¸÷Ä£¿éʵÏÖ¹ý³Ì£¬×îºó¶Ô×ÓϵͳµÄ²»Í¬Ä£¿é½øÐÐÕë¶ÔÐԵŦÄܲâÊÔ£¬¶Ô²âÊÔ½á¹û½øÐÐÁË·ÖÎöÓëÂÛÖ¤¡£
¡¡¡¡µÚÁùÕÂΪ×ܽáÓëÕ¹Íû¡£×ܽáÁ˱¾ÎÄÒѾ×ö³öµÄ¹¤×÷£¬Õë¶Ô¸Ã¿ÎÌâÌá³öÁË¿ÉÒÔ½øÒ»²½ÍêÉÆµÄµØ·½²¢¶ÔδÀ´¹æ»®½øÐÐÕ¹Íû¡£
¡¡¡¡µÚ¶þÕ Ïà¹ØÀíÂÛÓë¼¼Êõ
¡¡¡¡2.1¼ÆËã»úÊÓ¾õ
¡¡¡¡2.2Ö§³ÖÏòÁ¿»ú
¡¡¡¡2.3ÖÇÄÜС³µ
¡¡¡¡2.4Android
¡¡¡¡2.5±¾ÕÂС½á
¡¡¡¡µÚÈýÕ »ùÓÚ OpenCV µÄ»ðÔÖÐÅÏ¢ÌáÈ¡
¡¡¡¡3.1ÒýÑÔ
¡¡¡¡3.2ÒÉËÆ»ðÔÖÇøÓòÌáÈ¡
¡¡¡¡3.2.1 È¥ÔëÔ¤´¦Àí
¡¡¡¡3.2.2 »ùÓÚ»ìºÏ¸ß˹ģÐ͵ÄÒÆ¶¯ÇøÓòÌáÈ¡
¡¡¡¡3.2.3 »ùÓÚ RGB ¸Ä½øµÄ»ðÔÖÑÕɫģÐÍ
¡¡¡¡3.2.4 ÐÎ̬ѧ´¦Àí
¡¡¡¡3.3»ðÔÖÌØÕ÷ÌáÈ¡
¡¡¡¡3.3.1 »ðÑæÌØÕ÷
¡¡¡¡3.3.2 ÑÌÎíÌØÕ÷
¡¡¡¡3,4ʵÑé·ÖÎö
¡¡¡¡3.4.1 ʵÑé»·¾³
¡¡¡¡3.4.2 ʵÑé½á¹ûÓë·ÖÎö
¡¡¡¡3.5±¾ÕÂС½á
¡¡¡¡µÚËÄÕ »ùÓÚ SVM µ÷ÓÅÓëãÐÖµ·¨¸Ä½øµÄ»ðÔÖ¼ì²â¼°Ô¤¾¯
¡¡¡¡4.1ÒýÑÔ
¡¡¡¡4.2»ùÓÚÖ§³ÖÏòÁ¿»úµ÷ÓŵĻðÑæÌØÕ÷ÈÚºÏÅб𷽷¨
¡¡¡¡4.2.1 »ùÓÚÖ§³ÖÏòÁ¿»úµÄ»ðÑæÍ¼Ïñ¼ì²âÁ÷³Ì
¡¡¡¡4.2.2 Ö§³ÖÏòÁ¿»úÄ£ÐÍÉè¼ÆÓëµ÷ÓÅ
¡¡¡¡4.3»ùÓÚãÐÖµ·¨¸Ä½øµÄÑÌÎíÌØÕ÷ÈÚºÏÅб𷽷¨
¡¡¡¡4.3.1 ãÐÖµ·¨µÄÎÊÌâ
¡¡¡¡4.3.2 »ùÓÚãÐÖµ·¨µÄ¸Ä½ø
¡¡¡¡4.4ÊÓÆµ»ðÔÖÔ¤¾¯»úÖÆ¼°¸Ä½ø
¡¡¡¡4.5ʵÑé·ÖÎö
¡¡¡¡4.5.1 ʵÑé»·¾³
¡¡¡¡4.5.2 ʵÑé¹ý³Ì
¡¡¡¡4.5.3 ʵÑé½á¹ûÓë·ÖÎö
¡¡¡¡4.6±¾ÕÂС½á
¡¡¡¡µÚÎåÕ »ùÓÚ¼ÆËã»úÊÓ¾õÓëÖÇÄÜС³µµÄÏû·ÀϵͳÉè¼ÆÓëʵÏÖ
¡¡¡¡5.1ÒýÑÔ
¡¡¡¡5.2ϵͳÕûÌå¼Ü¹¹Éè¼Æ
¡¡¡¡5.3»ùÓÚ¼ÆËã»úÊÓ¾õµÄ»ðÔÖ¼ì²â¼°Ô¤¾¯ÏµÍ³
¡¡¡¡5.3.1 ¼Ü¹¹Éè¼Æ
¡¡¡¡5.3.2 Ó²¼þʵÏÖ
¡¡¡¡5.3.3 Èí¼þʵÏÖ
¡¡¡¡5.3.4 ¹¦ÄܲâÊÔ
¡¡¡¡5.4»ùÓÚÖÇÄÜС³µµÄ»ðÔÖÐͬ¾ÈԮƽ̨
¡¡¡¡5.4.1 ¼Ü¹¹Éè¼Æ
¡¡¡¡5.4.2 Ó²¼þʵÏÖ
¡¡¡¡5.4.3 Èí¼þʵÏÖ
¡¡¡¡5.4.4 ¹¦ÄܲâÊÔ
¡¡¡¡5.5±¾ÕÂС½á
µÚÁùÕ ×ܽáÓëÕ¹Íû
¡¡¡¡×ܽá
¡¡¡¡±¾ÎÄÕë¶ÔÏÖÓÐÏû·Àϵͳ³£¹Ø×¢ÓÚ»ðÔÖ¼ì²âÔ¤¾¯¶øºöÂÔ¶Ô¾ÈÔ®¹¦ÄܵÄÈںϣ¬Ö¼ÔÚÉè¼Æ²¢¿ª·¢ÊµÏÖÁËÒ»ÖÖ»ùÓÚ¼ÆËã»úÊÓ¾õºÍÖÇÄÜС³µ¼¼Êõ£¬¿ÉÒÔÔÚ»ðÔÖ·¢ÉúµÄǰ¡¢ÖС¢ºóÈý¸ö½×¶Î·Ö±ðÏνӷ¢»Ó¼ì²â¡¢Ô¤¾¯ºÍ¾ÈÔ®¹¦ÄܵÄÏû·Àϵͳ£¬´ïµ½×ۺϼõÉÙÈËÀàÉúÃüÓë²Æ²úËðʧµÄÄ¿±ê¡£ÔÚÀíÂÛÑо¿²ãÃæ£¬Éè¼ÆÁËÒ»¸öÊÓÆµ»ðÔÖÐÅÏ¢ÌáÈ¡¡¢¼ì²â¡¢Ô¤¾¯¡¢¾ÈÔ®Á÷³Ì£¬²¢Õë¶Ô¸÷½×¶ÎÎÊÌâ½øÐÐÁ˸ĽøÓëÑéÖ¤£º
¡¡¡¡£¨1£©»ðÔÖÐÅÏ¢´¦ÀíÈôҪ׼ȷÅбðÊÓÆµÖеÄÄÚÈÝ£¬±ØÏÈÒª´¦ÀíÊÓÆµÖеÄÔëÉùÓë»ðÔÖ¸ÉÈÅÎï¡£±¾ÎÄÉè¼ÆÁËÒ»ÖÖÒÉËÆ»ðÔÖÇøÓòÌáÈ¡·½·¨£¬¿ÉÒÔÌá¸ßͼÏñÖÊÁ¿²¢³õ²½µÃ³ö»ðÔÖÇøÓò£¬²¢Õë¶ÔÏÖÓÐµÄ RGB »ðÑæÑÕÉ«¿¹ÁÁ¶È¸ÉÈŲîµÄÎÊÌâ½øÐÐÁ˸Ľø£¬Í¨¹ý¶Ô±ÈʵÑéÑéÖ¤ÁËÉè¼Æ·½·¨µÄºÏÀíÐÔÓëЧ¹û¡£
¡¡¡¡£¨2£©»ðÔÖÌØÕ÷ÌáÈ¡ÒÉËÆ»ðÔÖÇøÓò²¢²»ÄÜÍêÈ«Åųý¸ÉÈŵĴæÔÚ£¬Òò´ËÓбØÒª½øÒ»²½ÌáÈ¡³ö»ðÔÖÓÐÐ§ÌØÕ÷£¬Çø±ðÓÚÏàËÆµÄ¸ÉÈŲÅÄÜÌáÉý¼ì²âÐÔÄÜ¡£Í¨¹ý¶ÔÌØÕ÷Ö®¼ä¹ØÏµ¼°ÌØÕ÷ÊýÁ¿¶Ô¸÷ÈÚºÏÅбð»úÖÆ¸´ÔÓÓ°ÏìµÄÑо¿£¬Ñ¡ÔñÆäÖп¹¸ÉÈÅÄÜÁ¦¸üÇ¿ÇÒñîºÏµÍµÄÌØÕ÷½øÐÐÌáÈ¡£¬²¢¶Ô¸÷ÌØÕ÷ÌáÈ¡·½·¨Ïò¼ò±ãÓÐЧµÄÄ¿±ê½øÐÐÓÅ»¯Éè¼Æ¡£
¡¡¡¡£¨3£©»ðÔÖ¼ì²âÕë¶ÔĿǰ»ðÔÖ¼ì²â·½·¨²àÖØ»ðÑæ¼ì²â¶øÈ±·¦¶ÔÑÌÎíµÄÑо¿£¬ÊµÏÖÁË»ðÑæºÍÑÌÎí×ۺϼì²â·½·¨¡£ÓÉÓÚ»ðÑæÊÇ»ðÔÖ×î³£³öÏÖ£¬Ò²ÊÇ×îÃ÷ÏÔµÄÏÖ³¡£¬Éè¼Æ»ùÓÚ SVM ²¢ÓÅ»¯µÄ·ÖÀàÄ£ÐÍÀ´¼ì²â»ðÑæ¡£¶ø¶ÔÓÚÑÌÎíÍùÍùÏÈÓÚ»ðÑæ³öÏÖºÍż¶ûÒõȼ»ðÏÖÏó£¬ÑÌÎí¼ì²âÒ²±Ø²»¿ÉÉÙ£¬Òò´ËÉè¼ÆÁË»ùÓÚãÐÖµ·½·¨½øÐмì²â£¬ÆäÖжÔãÐÖµ·¨µÄ±×¶Ë½øÐÐÁË·ÖÎö²¢Ìá³ö¸Ä½ø¡£
¡¡¡¡£¨4£©»ðÔÖÔ¤¾¯»úÖÆ¶ÔÏÖÓÐÑо¿Öмì²âµ½»ðÑæ»òÑÌÎí¼´»ðÔÖÔ¤¾¯µÄÎÊÌâ½øÐÐÁË·ÖÎö£¬²ûÊöÁË»ðÔÖÅбð¹ý³ÌµÄÖØÒªÐÔ£¬Éè¼ÆÁËÒ»ÖÖ»ùÓÚÃæ»ýÔö³¤µÄ»ðÔÖÅбð»úÖÆ·Ö±ð½øÐлðÇéÌáÐѺͻðÔÖÔ¤¾¯£¬¸Ä½øÁËÏÖÓлðÔÖÔ¤¾¯»úÖÆ¡£
¡¡¡¡£¨5£©»ðÔÖ¾ÈÔ®Õë¶ÔÏÖÓлðÔÖ¾ÈԮϵͳÍÑÀëÓÚ¼ì²âÓëÔ¤¾¯ÏµÍ³£¬²»ÄܵÚһʱ¼äÕ¹¿ª¾ÈÔ®£¬ÇÒ²»ÄÜÂú×ãÓÚ»ðÔÖÏÖ³¡¶à±ä¶ø¶àÑùµÄ¾ÈÔ®ÐèÇó£¬Ìá³öÁËÒ»ÖÖеÄÉè¼ÆË¼Â·£¬¼´Éè¼ÆÒ»ÖÖÖ±½Ó¹¤×÷ÓÚ±¾Ïû·À³¡½øÐп±Ì½¡¢¶¨Î»¡¢´«ËÍÎïÆ·µÈ£¬¸ÄäĿ¾ÈԮΪ¿ÆÑ§¾ÈÔ®£¬¼õÉÙ¾ÈԮΣÏÕÔö¼Ó¾ÈԮЧÂÊ£¬»¹¿ÉÒÔΪÏû·ÀÔ±Ö®ÍâµÄ¸ü¹ã´ó´ý¾ÈÈËÔ±ÌṩС³µ²Ù×÷·þÎñ£¬¾ÈԮƽ̨¿ÉÒÔ¸ü¼Ó¾«×¼Ö±½ÓµØÌṩ²Ù×÷ÕßÐèÒªµÄ·þÎñ¡£
Õ¹Íû
¡¡¡¡±¾ÎÄ´Ó¼ì²â¡¢Ô¤¾¯ºÍ¾ÈÔ®³ö·¢Éè¼Æ²¢ÊµÏÖÁËÒ»ÖÖÏû·Àϵͳ£¬ËäÈ»´ïµ½Á˳õ²½Ñé֤Ŀ±ê£¬µ«ºÜ¶àÉè¼ÆÈÔÈ»Óдý½ñºóµÄ¹¤×÷Öн«¸ÃÏû·Àϵͳ±äµÃ¸ü¼Ó³ÉÊ죺
¡¡¡¡£¨1£©»ðÔÖ¼ì²âʵ¼ÊÊÓÆµ¼à¿ØÇøÓò»áÓкܶ࣬Òò¶øÊÓÆµ»ðÔÖ¼ì²âϵͳӦ¸Ã¸Ä½øÎªµçÊÓǽÐÎʽµÄ¶àͨµÀʵʱ¼ì²â£»ÊÓÆµ»ðÔÖ¼ì²âËäÈ»²»Êܿռ䡢ζȡ¢Êª¶ÈµÄ¸ÉÈÅ£¬µ«ÊÜÎïÌåÕÚµ²ºó»áÐÎ³É¼à¿ØÃ¤Çø£¬ËùÒÔ¿ÉÒÔ½áºÏ´«¸ÐÆ÷Ò»ÆðʹÓã¬Ò²Í¬Ê±·½±ã¿ÉÊÓ»¯Ò³ÃæÁ¿»¯»·¾³¸÷Ïî²ÎÊý£»Î´²ÉÓÃÀàËÆHIKVISION ÕâÑùµÄרҵ¼¶ÊÓÆµ¼à¿ØÏµÍ³£¬Ò²Ã»ÓÐÍøÂçÓ²Å̼Ïñ»ú×÷ΪԶ³Ì·þÎñÆ÷£¬·ñÔò¿ÉÌṩԶ³Ì·ÃÎÊÄÜÁ¦£¬Ó²¼þˮƽµÄÌá¸ßÒ²½«ÌáÉý¼ì²â׼ȷ¶ÈºÍ¼ì²âËٶȵÄÌáÉý¡£
¡¡¡¡£¨2£©»ðÔÖÔ¤¾¯Ô¤¾¯µÄÐÎʽ¿ÉÒÔ¸ü¼Ó·á¸»¶àÑù£¬±ÈÈçÔÚ¼à¿ØÏÖ³¡°²×°¼°Ê±Éù¹â±¨¾¯×°Öã¬Ö»ÒÀÀµ¶ÌÐÅ»òÓÊÏ䣬¿ÉÄÜ´æÔÚ½ÓÊÕ²»¼°Ê±ÎÊÌâ¡£
¡¡¡¡£¨3£©»ðÔÖ¾ÈÔ®·½ÃæÐ¡³µÆ½Ì¨²ÉÓõÄÂÖʽËäÈ»Ãô½Ý»ú¶¯£¬µ«ÊÇͨ¹ýÄÜÁ¦ÓÐÏÞ£¬¿ÉÒԸĽøÎªÍ¨¹ýÄÜÁ¦¸üÇ¿µÄÂÄ´øÊ½Ð¡³µ£»¾ÈԮƽ̨¿ÉÒÔÔö¼ÓÒ»¸ö¿ÉÊÓ»¯µÄ Web ϵͳ£¬¿ÉÒÔ½«Ð¡³µÐ¯´øµÄ¸÷¸Ð֪ģ¿éËѼ¯µ½µÄÐÅÏ¢½øÐлã×ÜÕ¹ÏÖ£¬Óû§Ò²¿ÉÒÔÔ¶³Ì·ÃÎÊ£¬ÓÐÁËÊý¾Ý¸ü¿ÉÒÔÀûÓÃÊý¾ÝÍÚ¾ò¼¼Êõ×ö¸ü¶àµÄ¸Ä½ø¡£
¡¡¡¡²Î¿¼ÎÄÏ×
¡¡¡¡[1] ÆÝ°ß¡£ ½ü 10 ÄêÍöÈË»ðÔÖͳ¼ÆÊý¾Ý·ÖÎö¼°·À·¶¶Ô²ß[J]. ÖйúÏû·À£¬ 2017£¨11£©£º18-23.
¡¡¡¡[2] ¹«°²²¿Ïû·À¾Ö¡£ ÖйúÏû·ÀÄê¼ø£¨2014£©[M]. ÔÆÄÏ£º ÔÆÄÏÈËÃñ³ö°æÉ磬 2014.
¡¡¡¡[3] ·¶Ã¯¿ý£¬ Ñîǧºì£¬ ·ëʱ½ø£¬ µÈ¡£ ÎÒ¹úÏû·ÀÔ±Ãð»ð¾ÈÔ®ÖÐÉËÍöÇé¿öÑо¿ [J]. ¹¤Òµ°²È«Óë»·±£ ,2015£¨2£©£º82-85.
¡¡¡¡[4] ×ۺϱ¨µÀ¡£ Ö±»÷Ìì½ò¸Û"8·12"ÌØ±ðÖØ´ó»ðÔÖ±¬Õ¨Ê¹Ê[J]. ÖйúÏû·À£¬ 2015£¨16£©£º4-7.
¡¡¡¡[5] Che-Bin Liu, Narendra Ahuja. Vision Based Fire Detection[C]// Pattern Recognition, 2004. ICPR 2004.Proceedings of the 17th International Conference on. IEEE, 2004.
¡¡¡¡[6] Wang T, Shi L, Yuan P, et al. A new fire detection method based on flame color dispersion and similarity inconsecutive frames[C]// Chinese Automation Congress. IEEE, 2018.
¡¡¡¡[7] Seebamrungsat J, Praising S, Riyamongkol P. Fire detection in the buildings using image processing[C]// 2014 Third ICT International Student Project Conference £¨ICT-ISPC£©¡£ IEEE, 2014.
¡¡¡¡[8] Áõ¾ü£¬ ³Ì¼Ì¹ú£¬ ÒüÖ¾£¬ µÈ¡£ Ïû·À»úÆ÷ÈËÃð»ð¾ÈÔ®Ó¦Óü¼Êõ·ÖÎö[J]. Ïû·À¼¼ÊõÓë²úÆ·ÐÅÏ¢£¬ 2010£¨11£©£º15-18. [9] ¼°ÁÖ¡£ »ùÓÚͼÏñÌØÕ÷ÌáÈ¡µÄ»ðÔÖ¼ì²â[D]. ´óÁ¬Àí¹¤´óѧ˶ʿÂÛÎÄ£¬ 2013.
¡¡¡¡[10] ÍõÕñÅô¡£ »ùÓÚ OpenCV µÄ»ðÔÖÊÓÆµÊ¶±ð·½·¨Ñо¿[D]. ÉòÑôº½¿Õº½Ìì´óѧ£¬ 2013 [11] Li K, Yang Y. Fire detection algorithm based on CLG-TV optical flow model[C]// IEEE InternationalConference on Computer and Communications. IEEE, 2017.
¡¡¡¡[12] De Iacovo A, Venettacci C, Colace L, et al. PbS Colloidal Quantum Dot Visible-Blind PhotodetectorforEarly Indoor Fire Detection[J]. IEEE Sensors Journal, 2017, 17£¨14£©£º4454-4459.
¡¡¡¡[13] Ji Q G, Zhe-Ming L U, Chi R. Real-time multi-feature based fire flame detection in video[J]. IET ImageProcessing, 2016, 11£¨1£©£º31-37.
¡¡¡¡[14] Muhammad K, Ahmad J, Mehmood I, et al. Convolutional Neural Networks based Fire Detection inSurveillance Videos[J]. IEEE Access, 2018£¨99£©£º1-1.
¡¡¡¡[15] Muhammad K, Ahmad J, Lv Z, et al. Efficient Deep CNN-Based Fire Detection and Localization in VideoSurveillance Applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019,49£¨7£©£º1419-1434.
¡¡¡¡[16] Tian H, Li W, Ogunbona P O, et al. Detection and Separation of Smoke From Single Image Frames[J]. IEEETransactions on Image Processing, 2018, 27£¨3£©£º1164-1177.
¡¡¡¡[17] Hong X, Wang W, Liu Q. Design and Realization of Fire Detection Using Computer Vision Technology[C]//2019 Chinese Control And Decision Conference £¨CCDC£©£¬ Nanchang, China, 2019:5645-5649.
¡¡¡¡[18] He Z. Video Based Fire Detection in Photovoltaic System[C]// 2019 4th International Conference onMechanical, Control and Computer Engineering £¨ICMCCE£©£¬ Hohhot, China, 2019:289-2894.
¡¡¡¡[19] Khan M N A, Tanveer T, Khurshid K, et al. Fire Detection System using Raspberry Pi[C]// 2019International Conference on Information Science and Communication Technology £¨ICISCT£©£¬ Karachi,Pakistan, 2019:1-6.
¡¡¡¡[20] Cheng X, Wu J, Yuan X, et al. Principles for a video fire detection system[J]. Fire Safety Journal, 1999,33:57-69.
¡¡¡¡[21] ?elik T, Demirel H. Fire detection in video sequences using a generic color model[J]. FIRE SAFETYJOURNAL, 2009, 44£¨2£©£º147-158.
¡¡¡¡[22] Íõ´ó´¨£¬ Íõ³¤º£¡£ »ùÓÚ OpenCV µÄͼÏñÐ͸ÐÑÌ»ðÔÖ̽²â±¨¾¯ÏµÍ³[J]. ÉÌÆ·ÓëÖÊÁ¿·½¨ÖþÓë·¢Õ¹£¬2013£¨6£©£º9-10.
¡¡¡¡[23] Czapla T, Józef Wrona. Technology Development of Military Applications of Unmanned GroundVehicles[M]// Vision Based Systemsfor UAV Applications. Springer International Publishing, 2013.
¡¡¡¡[24] Roesch O J, Schilling K, Roth H. Haptic interfaces for the remote control of mobile robots[J]. ControlEngineering Practice, 2002, 10£¨11£©£º1309-1313.
¡¡¡¡[25] ¸ßÖÙÁÁ£¬ ÍõÇﻪ£¬ ÊæÁ¢¸££¬ µÈ¡£ ÉÁÖ»ðÔÖÆË¾ÈÏû·À³µ×°±¸µÄÖÖÀ༰ʹÓü¼Êõ[J]. ÁÖÒµ»úеÓëľ¹¤É豸£¬2014£¨8£©£º10-14.
¡¡¡¡[26] ºú´«Æ½¡£ Ïû·À»úÆ÷È˵Ŀª·¢ÓëÓ¦ÓÃ[J]. »úÆ÷È˼¼ÊõÓëÓ¦Ó㬠2003£¨5£©£º37-41.
¡¡¡¡[27] ³ÂΰÕÜ£¬ »ÆÃÎÐÑ£¬ ÎâµÏ£¬ µÈ¡£ Ïû·À¸¨Öú¾ÈÔ®»úÆ÷ÈËȺÉè¼ÆÑо¿[J]. Èí¼þ¹¤³Ì£¬ 2019£¨9£©¡£
¡¡¡¡[28] ÕŽ¡¡£ Ïû·À»úÆ÷ÈË GA892.1-2010 ±ê×¼µÄ²Ù×÷ÐÔ·ÖÎö[J]. ±ê×¼¿ÆÑ§£¬ 2016£¨12£©¡£
¡¡¡¡[29] Kong S G, Jin D, Li S, et al. Fast fire flame detection in surveillance video using logistic regression andtemporal smoothing[J]. Fire Safety Journal, 2016, 79:37-43.
¡¡¡¡[30] Seebamrungsat J, Praising S, Riyamongkol P. Fire detection in the buildings using image processing[C]//2014 Third ICT International Student Project Conference £¨ICT-ISPC£©¡£ IEEE, 2014.
¡¡¡¡[31] Ho C, Chen M. Nighttime fire smoke detection system based on machine vision[J]. International Journal ofPrecision Engineering and Manufacturing, 2012, 13£¨8£©£º1369-1376.
¡¡¡¡[32] Jianfei Z. Detection and tracking of moving object in traffic video based on Open CV[J]. ElectronicTest,2012.
¡¡¡¡[33] Weijie L, Zhijian L, Tiehua M. Moving objects detection of video image based on Open CV[J]. ElectronicTest, 2011.
¡¡¡¡[34] I. Culjak, D. Abram, T. Pribanic, et al. A brief introduction to OpenCV[C]// MIPRO, 2012 Proceedings ofthe 35th International Convention. IEEE, 2012.
¡¡¡¡[35] Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional Architecture for Fast Feature Embedding[J].2014.
¡¡¡¡[36] Abadi, Martín, Barham, et al. TensorFlow: A system for large-scale machine learning[J]. 2016.
¡¡¡¡[37] http://www.csie.ntu.edu.tw/~cjlin/libsvm[38] ´Þΰ¶«£¬ ÖÜÖ¾»ª£¬ ÀîÐÇ£¬ µÈ¡£ Ö§³ÖÏòÁ¿»úÑо¿[J]. ¼ÆËã»ú¹¤³ÌÓëÓ¦Ó㬠2001£¨1£©¡£
¡¡¡¡[39] Toreyin B U, Cetin A E. Wildfire detection using LMS based active learning[C]// IEEE InternationalConference on Acoustics. IEEE Computer Society, 2009. [40] Chaohui Z, Xiaohui D, Shuoyu X, et al. An Improved Moving Object Detection Algorithm Based on FrameDifference and Edge Detection[C]// Image and Graphics, 2007. ICIG 2007. Fourth International Conferenceon. IEEE Computer Society, 2007.
¡¡¡¡[41] ÍõÃÍ¡£ »ùÓÚÊÓÆµ¼à¿ØÆ½Ì¨µÄ»ðÔÖͼÏñ¼ì²âËã·¨Ñо¿[D]. Ìì½ò´óѧ£¬ 2012.
¡¡¡¡[42] Stauffer C, Grimson W E L. Learning Patterns of Activity Using Real-Time Tracking[J]. Trans on Pami,2000, 22£¨8£©£º747-757.
¡¡¡¡[43] Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking[C]// ComputerVision and Pattern Recognition, 1999. IEEE Computer Society Conference on. IEEE, 1999.
¡¡¡¡[44] Chen T H, Wu P H, Chiou Y C. An early fire-detection method based on image processing[C]// ImageProcessing, 2004. ICIP '04. 2004 International Conference on. IEEE, 2004.
¡¡¡¡[45] Yoo, Jae-Doug, Park, Min-Ki, Cho, Ji-Ho, et al. Local color transfer between images using dominantcolors[J]. Journal of Electronic Imaging, 2016, 22£¨3£©£º033003.
¡¡¡¡[46] Turgay ?elik, Hasan Demirel. Fire detection in video sequences using a generic color model[J]. Fire SafetyJournal, 2009, 44£¨2£©£º147-158. [47] Phung S L, Bouzerdoum A, Chai D. A novel skin color model in ycbcr color space and its application tohuman face detection[C]// International Conference on Image Processing. IEEE, 2002.
¡¡¡¡[48] Ëïè¡¡£ »ùÓÚÊÓÆµÍ¼ÏñµÄ»ðÔÖ¼ì²âËã·¨Ñо¿ÓëÉè¼Æ[D]. ɽ¶«´óѧ£¬ 2018.
¡¡¡¡[49] C. E. Premal, S. S. Vinsley. Image processing based forest fire detection using YCbCr colourmodel[C], 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014],Nagercoil, 2014:1229-1237.
¡¡¡¡[50] µËÊ˳¬£¬ »ÆÒú¡£ ¶þֵͼÏñÅòÕ͸¯Ê´µÄ¿ìËÙËã·¨[J]. ¼ÆËã»ú¹¤³ÌÓëÓ¦Ó㬠2017£¨5£©¡£
¡¡¡¡[51] Yuanbin W. Smoke Recognition Based on Machine Vision[C]// International Symposium on Computer.IEEE, 2016.
¡¡¡¡[52] Wang T, Shi L, Yuan P, et al. A new fire detection method based on flame color dispersion and similarity inconsecutive frames[C]// Chinese Automation Congress. IEEE, 2018.
¡¡¡¡[53] ÕŽø»ª£¬ ׯ½¡£¬ ¶Åº£·å£¬ µÈ¡£ Ò»ÖÖ»ùÓÚÊÓÆµ¶àÌØÕ÷ÈںϵĻðÑæÊ¶±ðËã·¨[J]. Î÷°²½»Í¨´óѧѧ±¨£¬2006£¨07£©£º73-76.
¡¡¡¡[54] http://signal.ee.bilkent.edu.tr/VisiFire/[55] Yuanbin W. Smoke Recognition Based on Machine Vision[C]// International Symposium on Computer.IEEE, 2016.
¡¡¡¡[56] Mangasarian O L, Musicant D R. Successive Overrelaxation for Support Vector Machines[J]. IEEETransactions on Neural Networks, 1999, 10£¨5£©£º1032-1037.
¡¡¡¡[57] Lee Y J, Mangasarian O L. SSVM: A Smooth Support Vector Machine for Classification[J]. ComputationalOptimization and Applications, 2001, 20£¨1£©£º5-22.
¡¡¡¡[58] Àî ÁÕ , ÕÅÏþÁú . »ù ÓÚ RBF ºË µÄ SVM ѧ ϰ Ëã ·¨ µÄ ÓÅ »¯ ¼Æ Ëã [J]. ¼Æ Ëã »ú ¹¤ ³Ì Óë Ó¦ Óà ,2006£¨29£©£º194-196+208.
¡¡¡¡[59] http://www.fire.nist.gov/tree_fire.htm[60] Phung S L, Bouzerdoum A, Chai D. A novel skin color model in ycbcr color space and its application tohuman face detection[C]// International Conference on Image Processing. IEEE, 2002.
¡¡¡¡[61] Xuan Truong T, Kim J M. Fire flame detection in video sequences using multi-stage pattern recognitiontechniques[J]. Engineering Applications of Artificial Intelligence, 2012, 25£¨7£©£º1365-1372.
¡¡¡¡[62] Qureshi W S, Ekpanyapong M, Dailey M N, et al. QuickBlaze: Early Fire Detection Using a CombinedVideo Processing Approach[J]. Fire Technology, 2016, 52£¨5£©£º1293-1317.
ÖÂл
¡¡¡¡ÂÛÎÄÍê³ÉÖ®¼Ê£¬»ØÏëÆðÈýÄêÀ´Ñо¿ÉúѧϰÉú»îÖеĵãµãµÎµÎ£¬Óиж¯£¬Óб¯ÉË£¬ÓпìÀÖ£¬µ«ÊǸü¶àµÄÊÇÊÕ»ñ¡£Ñо¿ÉúÆÚ¼äÎÒÓÐÐÒÈÏʶÁËÒ»°ï־ͬµÀºÏµÄͬѧ£¬Óöµ½ÁËѧÊõÑϽ÷µÄµ¼Ê¦£¬ÊÕ»ñÁËÓÑÒ꣬¸üÊÕ»ñÁ˳ÁµéµéµÄרҵ֪ʶ£¬ÔÚ´ËÏò°ïÖú¹ýÎÒµÄÀÏʦͬѧÃDZí´ïÖÔÐĵĸÐл¡£
¡¡¡¡Ê×ÏȸÐлÎÒµÄѧУ--ÄϾ©Óʵç´óѧ£¬¸øÁËÎÒÈýÄêÑо¿ÉúѧϰµÄ»ú»á£¬ÎªÎÒÌṩÁËÁ¼ºÃµÄѧϰ»·¾³¡£ÔÚÈýÄêµÄ˶ʿÑо¿ÉúÉú»îÖУ¬²»½öÔÚѧϰÁ˹㷺µÄרҵ֪ʶ£¬ÅàÑøÁË»ù±¾µÄѧÊõËØÑø£¬»¹ÔڷḻµÄУ԰»î¶¯Öв»¶Ï³É³¤£¬½¥½¥×ßÏò³ÉÊ죬ÕâЩ¶¼ÎªÎÒÒÔºó×ßÏòÉç»á£¬×ßÉϹ¤×÷¸Úλ´òÏÂÁË»ù´¡¡£
¡¡¡¡¸ÐлÑо¿ÉúÈýÄêÊÚÎÒÒÔÒµµÄµ¼Ê¦--³ÂÃÀ¾êÀÏʦ¡£¸ÐлÄúÕâÈýÄê¶ÔÎÒ¿ÆÑÐѧϰµÄ½Ìµ¼£¬ÌرðÊǶÔÎÒ·¢±íµÄרÀû¡¢ÂÛÎļ°±ÏÒµÂÛÎĽøÐÐÁË·´¸´ÉóÔĺÍÖ¸µ¼£¬¹ÄÀøÎҲμӾºÈüÏîÄ¿¡£Í¬Ê±£¬³ÂÀÏʦ»¹½Ì»áÁËÎҺܶàÓëÈËÏà´¦µÄµÀÀí£¬ÔÚÉú»î¼°Î´À´·¢Õ¹ÉÏÒ²¶ÔÎÒ¸ñÍâ¹ØÐÄ¡£³ÂÀÏʦµÄÈÏÕæ¡¢ÄÍÐÄ¡¢°üÈݺ͹ػ³¸øÎÒÁôÏÂÁËÉî¿ÌµÄÓ¡Ïó£¬Ëý¶ÔÎÒµÄÓ°ÏìÒ²½«¼ÌÐøÖ¸ÒýÎÒǰ½øµÄ²½·¥¡£ÔٴθÐл³ÂÀÏʦÇã×¢µÄÐÄѪ£¡
¡¡¡¡¸ÐлÓëÎÒ³¯Ï¦Ïà´¦µÄͬѧÃÇ£¬¸ÐлʵÑéÊÒ¹ÜÃú·æ¡¢Áõ±¼µÈºÃÓÑ£¬¸ÐлʦÐÖʦµÜʦÃÃÃÇ¡£
¡¡¡¡Ñо¿ÉúÈýÄêÀ´ó¼ÒÏ໥°ïÖú¡¢Ï໥ѧϰ¡¢¹²Í¬½ø²½£¬ÓëÄãÃǹ²Í¬¶È¹ýµÄ´óѧʱ¹â½«ÊÇÎÒ´ËÉú×îÃÀµÄ¼ÇÒä¡£
¡¡¡¡×îºó£¬ÏòÆÀÔı¾ÆªÂÛÎÄËùÓÐµÄÆÀÉóºÍר¼ÒÀÏʦÃDZíÊ¾ÕæÖ¿µÄ¸Ðл£¬¸ÐлÄãÃǵĸ¶³öºÍÌá³öµÄ±¦¹óÒâ¼û£¡
£¨ÈçÄúÐèÒª²é¿´±¾Æª±ÏÒµÉè¼ÆÈ«ÎÄ£¬ÇëÄúÁªÏµ¿Í·þË÷È¡£©