24СʱÂÛÎ͍֯ÈÈÏß

×Éѯµç»°

ÈÈÃűÏÉ裺ÍÁľ¹¤³ÌØ­¹¤³ÌÔì¼ÛØ­ÇÅÁº¹¤³ÌØ­¼ÆËã»úØ­javaØ­aspØ­»úеح»úеÊÖØ­¼Ð¾ßØ­µ¥Æ¬»úØ­¹¤³§¹©µçØ­²É¿ó¹¤³Ì
Äúµ±Ç°µÄλÖãºÂÛÎ͍֯ > ±ÏÒµÉè¼ÆÂÛÎÄ >
¿ìËÙµ¼º½
±ÏÒµÂÛÎ͍֯
¹ØÓÚÎÒÃÇ
ÎÒÃÇÊÇÒ»¼ÒרҵÌṩ¸ßÖÊÁ¿´ú×ö±ÏÒµÉè¼ÆµÄÍøÕ¾¡£2002Äê³ÉÁ¢ÖÁ½ñΪÖÚ¶à¿Í»§Ìṩ´óÁ¿±ÏÒµÉè¼Æ¡¢ÂÛÎ͍ÖƵȷþÎñ£¬Ó®µÃÖÚ¶à¿Í»§ºÃÆÀ£¬ÒòΪרע£¬ËùÒÔרҵ¡£Ð´×÷ÀÏʦ´ó²¿·ÖÓÉÈ«¹ú211/958µÈ¸ßУµÄ²©Ê¿¼°Ë¶Ê¿ÉúÉè¼Æ£¬Ö´±Ê£¬Ä¿Ç°ÒÑΪ5000Óàλ¿Í»§½â¾öÁËÂÛÎÄд×÷µÄÄÑÌâ¡£ ±ü³ÐÒÔÓû§ÎªÖÐÐÄ£¬ÎªÓû§´´Ôì¼ÛÖµµÄÀíÄÎÒÕ¾ÓµÓÐÎÞ·ì¶Ô½ÓµÄÊÛºó·þÎñÌåϵ£¬´ú×ö±ÏÒµÉè¼ÆÍê³ÉºóÓÐרҵµÄÀÏʦ½øÐÐÒ»¶ÔÒ»ÐÞ¸ÄÓëÍêÉÆ£¬¶ÔÓдð±çÐèÇóµÄͬѧ½øÐÐÒ»¶ÔÒ»µÄ¸¨µ¼,ΪÄã˳Àû±ÏÒµ±£¼Ý»¤º½
´ú×ö±ÏÒµÉè¼Æ
³£¼ûÎÊÌâ

»ùÓÚSPCE061Aµ¥Æ¬»úµÄÓïÒôÎÊ´ð½»»¥ÏµÍ³

Ìí¼Óʱ¼ä£º2021/06/19 À´Ô´£ºÎ´Öª ×÷ÕߣºÀÖ·ã
Õª Òª ±¾ÎÄÒÔ SPCE061A µ¥Æ¬»úΪºËÐÄ´¦ÀíÆ÷£¬ÀûÓÃÆäÊÊÓÃÓÚÊý×ÖÓïÒôʶ±ðµÄÌØµã£¬Éè¼ÆÁËÒ½ÁÆÌض¨ÁìÓòµÄÓïÒôÎÊ´ð½»»¥ÏµÍ³¡£±¾ÎÄÒÔÐÄѪ¹ÜÄڿƳ£¼û¼²²¡ºÍÓÃҩΪÑо¿Ö÷Ì⣬½áºÏ³£¼û¼²²¡ºÍÓÃÒ©µÄÎÊÌâ֪ʶ¿âºÍ´ð°¸ÖªÊ¶¿â×÷Ö§³Å£¬ÎªÓû§ÌṩѰҽÎÊÒ©µÄÎÊ´ð½»»¥Ó²¼þƽ
ÒÔÏÂΪ±¾ÆªÂÛÎÄÕýÎÄ£º

Õª Òª

¡¡¡¡±¾ÎÄÒÔ SPCE061A µ¥Æ¬»úΪºËÐÄ´¦ÀíÆ÷£¬ÀûÓÃÆäÊÊÓÃÓÚÊý×ÖÓïÒôʶ±ðµÄÌØµã£¬Éè¼ÆÁËÒ½ÁÆÌض¨ÁìÓòµÄÓïÒôÎÊ´ð½»»¥ÏµÍ³¡£±¾ÎÄÒÔÐÄѪ¹ÜÄڿƳ£¼û¼²²¡ºÍÓÃҩΪÑо¿Ö÷Ì⣬½áºÏ³£¼û¼²²¡ºÍÓÃÒ©µÄÎÊÌâ֪ʶ¿âºÍ´ð°¸ÖªÊ¶¿â×÷Ö§³Å£¬ÎªÓû§Ìṩ"ѰҽÎÊÒ©"µÄÎÊ´ð½»»¥Ó²¼þƽ̨¡£

¡¡¡¡ÓïÒôÎÊ´ð½»»¥ÏµÍ³¹¦ÄܵÄʵÏÖÖ÷Òª·ÖΪ֪ʶ¿âµÄ½¨Á¢¡¢ÓïÒôѵÁ·ºÍʶ±ð¡¢ÕýÈ·´ð°¸ÌáÈ¡Èý¸ö²¿·Ö£¬ÖªÊ¶¿âµÄ½¨Á¢²¿·ÖÀûÓÃÍøÂçÅÀ³æ¼¼Êõ»ñÈ¡³£¼û¼²²¡ºÍÓÃÒ©×ÊÁϽ¨Á¢ÀëÏß֪ʶ¿â£¬²¢ÒÔ´Ë×÷Ϊϵͳµ×²ãÊý¾ÝµÄÖ§³Å£»ÓïÒôµÄѵÁ·ºÍʶ±ð²¿·Öͨ¹ýµ÷Óõ¥Æ¬»ú API º¯Êý¶Ô³£ÎÊÎÊÌâ½øÐÐѵÁ·ºÍʶ±ð£¬²¢ÉèÖÃÏàÓ¦µÄÎÊ´ðÓï¾ä½¨Á¢³£ÎÊÎÊ´ð¿â£»ÕýÈ·´ð°¸ÌáÈ¡²¿·ÖÕë¶ÔÎÊÌâ·ÖÀàÖеĸ´ÔÓÀàÎÊÌ⣬¶ÔÆä½øÐÐÎÊÌâ½âÎö¡¢ÐÅÏ¢¼ìË÷¡¢´ð°¸³éÈ¡µÈ²Ù×÷£¬·Ö±ðͨ¹ý»ùÓÚ¹æÔòºÍ¾ä·¨·ÖÎöµÄ·½·¨¡¢»ùÓÚÏòÁ¿¿Õ¼äÄ£Ð굀 TF-IDF Ëã·¨¡¢»ùÓÚ´°¿ÚÄ£Ð͵Ĵ𰸳éÈ¡Ëã·¨µÈ½«Ê¶±ð³öµÄÎÊÌâÆ¥ÅäÖÃÐŶÈ×î¸ßµÄ´ð°¸£¬×îÖÕÒÔÓïÒô²¥±¨µÄÐÎʽ·´À¡¸øÓû§¡£

¡¡¡¡±¾ÎÄͨ¹ý´óÁ¿µÄÓ¦ÓÃʵÑé¶ÔϵͳµÄ¹¦ÄܽøÐвâÊÔ£¬ÒÔÎÊÌâʶ±ðÂÊºÍ´ð°¸Æ¥ÅäÂÊÆÀ¼ÛϵͳµÄÐÔÄÜ£¬¾­¹ýÊý¾Ý·ÖÎöºÍͳ¼Æ£¬ÏµÍ³µÄÎÊÌâʶ±ðÂÊºÍ´ð°¸Æ¥ÅäÂÊ·Ö±ð´ïµ½ 86.3%ºÍ 84.9%,Óɴ˿ɼû£¬±¾ÎÄ×îÖÕʵÏÖÁËϵͳ"ѰҽÎÊÒ©"µÄÎÊ´ð½»»¥¹¦ÄÜ¡£

¡¡¡¡¹Ø¼ü´Ê£ºSPCE061A µ¥Æ¬»ú£»Ò½ÁÆÁìÓò£»ÓïÒôʶ±ð£»ÎÊ´ð½»»¥

ABSTRACT

¡¡¡¡This article takes SPCE061A single-chip microcomputer as the core processor and uses its characteristics suitable for digital voice recognition to design a voice question answering interactive system in a specific medical field. This article takes the common diseases and medications of cardiovascular medicine as the research theme, and combines the knowledge base and answer knowledge base of common diseases and medications to provide users with a question-and-answer interactive hardware platform.

¡¡¡¡The realization of the function of the voice question answering interactive system is mainly pided into the establishment of a knowledge base, voice training and recognition, and the extraction of correct answers. The establishment of the knowledge base uses the web crawler technology to obtain common diseases and medication information to build an offline knowledge base, and As the support of the underlying data of the system; the training and recognition part of the voice trains and recognizes frequently asked questions by calling the single chip API function, and sets up the corresponding question and answer statements to establish the frequently asked question and answer library; Perform question analysis, information retrieval, answer extraction and other operations on it, and use the rules and syntax analysis methods, vector space model-based TF-IDF algorithm, and window model-based answer extraction algorithm to match the identified questions with confidence The highest answer is finally fed back to the user in the form of voice broadcast.

¡¡¡¡This paper tests the function of the system through a large number of application experiments, and evaluates the performance of the system with the question recognition rate and answer matching rate. After data analysis and statistics, the system's question recognition rate and answer matching rate reached 86.3% and 84.9%, respectively. This shows that this article finally realized the question-answer interactive function of the system "seeking medical advice and medicine".

¡¡¡¡Key Words: SPCE061A MCU;The medical field;Speech recognition;Q&A interaction

µ¥Æ¬»ú

 

Ŀ ¼

¡¡¡¡µÚ 1 ÕÂ ÒýÑÔ

¡¡¡¡1.1 Ñо¿±³¾°ºÍÒâÒå

¡¡¡¡»¥ÁªÍøµÄ·ÉËÙ·¢Õ¹ºÍ¹ã·ºÆÕ¼°£¬Ê¹ÈËÃÇ´Ó»¥ÁªÍøÉÏ»ñÈ¡´óÁ¿ÐÅÏ¢±äµÃǰËùδÓеÄÈÝÒ×£¬µ«ÊÇÈçºÎ¹ýÂËÓû§²»ÐèÒªµÄÐÅÏ¢»ò´Ó´óÁ¿ÐÅÏ¢ÖлñÈ¡ÓÐÓÃÐÅϢȴһֱûÓкܺõĽâ¾ö·½°¸¡£ÏÖÓеÄËÑË÷ϵͳ£¬ÎÞÂÛÊÇ¿ª·ÅʽÁìÓò¼ìË÷»¹ÊÇ InternetËÑË÷ÒýÇæ£¬Í¨³£¶¼»ùÓڹؼü×ÖËÑË÷¡£ÕâÖÖËÑË÷ͨ³£ÓÐÒÔÏÂȱµã£ºÊ×ÏÈ£¬ËÑË÷·µ»ØµÄ½á¹ûͨ³£Óë±ê×¼´ð°¸Ïà¹Ø»ò½Ó½ü£¬¾àÀëÕæÊµÒâͼ½ÏÔ¶µÄÎı¾»òÍøÒ³ÐèÒªÓû§½øÒ»²½É¸Ñ¡ºÍ¹ýÂË£¬Õâ¸øÓû§´øÀ´¼«´óµÄ²»±ã£»Æä´Î£¬Óû§ËÑË÷ÒâͼÍùÍù¸üΪ¸´ÔÓ£¬²»Äܵ¥´¿Óöà¸ö¹Ø¼ü´ÊµÄÂß¼­×éºÏÀ´±í´ïËÑË÷ÐèÇó±¾Éí£¬Ò²²»ÄÜÇå³þµØ±í´ïÕæÊµµÄËÑË÷Òâͼ£¬Òò´Ë²»ÄÜÖ±½Ó¼ìË÷³öÂú×ãÓû§µÄ±ê×¼´ð°¸¡£ÁíÍ⣬´Ó×î¸ù±¾µÄ½Ç¶ÈÀ´¿´£¬»ùÓڹؼü×ÖµÄË÷ÒýÆ¥ÅäËã·¨Ëä¼òµ¥Ò×ÐУ¬µ«±Ï¾¹ËüÍ£ÁôÔÚÓïÑÔ±í²ã²¢²»´¥¼°ÓïÒ壬Òò´ËÄÑÒÔ½øÒ»²½Ìá¸ß¼ìË÷Ч¹û¡£

¡¡¡¡¶ø×Ô¶¯ÎÊ´ðϵͳ[1]£¨Question Answering,QA£©ÔÊÐíÓû§ÒÔ×ÔÈ»ÓïÑÔÌáÎʲ¢Ö±½Ó·µ»Ø×¼È·´ð°¸£¬ÆäÉè¼Æ¸ÅÄî¡¢²Ù×÷»úÖÆÓëÏÖÓйؼü×ÖËÑË÷ÍêÈ«²»Í¬£¬ÇÒÔ¤ÆÚ½á¹ûÓÅÓÚ´«Í³µÄ¹Ø¼ü×ÖËÑË÷¡£Ä¿Ç°£¬ÎÊ´ðϵͳÊÇÈ˹¤ÖÇÄܺÍ×ÔÈ»ÓïÑÔ´¦ÀíÁìÓò±¸ÊÜÖõÄ¿µÄÑо¿·½Ïò¡£ÎÊ´ðϵͳµÄ·ÖÀ࣬°´ÕÕÎÊÌâά¶È£¬¿É·ÖΪÁìÓòÄںͿª·ÅÓòÎÊ´ðϵͳ¡£

¡¡¡¡ÔÚ¹ú¼ÊÎı¾¼ìË÷»áÒ飨Text Retrieval Conference,TREC£©ºÍ¿çÓïÑÔÆÀ¹ÀÂÛ̳£¨Cross Language Evaluation Forum,CLEF£©µÈ×éÖ¯µÄÍÆ¶¯Ï£¬»ùÓÚÎı¾µÄ´ó¹æÄ£¿ª·ÅÓòÎÊ´ðϵͳÒѾ­È¡µÃÁ˳¤×ãµÄ½ø²½£¬¼Ì¶ø³öÏÖÁË NUS [2],BBN [3],Columbia [4]ºÍÆäËû¶¨ÒåµÄÎÊ´ðϵͳ²ÎÓëÁË TREC ÆÀ¹À£¬Í¬Ê±ÔÚÑо¿Èȳ±ºÍÐÐÒµ¾ºÕùµÄ±³¾°Ï²úÉúÁËһϵÁÐÆÀ¹ÀÖ¸±ê[5],ÆäÖйþ¶û±õ¹¤Òµ´óѧ½è¼ø¹ú¼ÊÉ϶ÔËÑË÷Ëã·¨µÄÆÀ¼Û»úÖÆ¾Í³£ÎÊÎÊÌ⼯[6]µÄÎÊ´ðϵͳÑо¿³öÁËÖÐÎÄÓïÑÔÀàµÄÆÀ¼Û·½·¨¡£µ«ÊÇ£¬ÕâÀ࿪·ÅʽÎÊ´ðϵͳÑÏÖØÒÀÀµÓÚÍøÂç×ÊÔ´£¬¶øÍøÂç×ÊÔ´µÄʵʱÐÔ¡¢¿ª·ÅÐԺ͸´ÔÓÐÔ¾ö¶¨ÆäËÑË÷µÄ׼ȷÂʲ»¸ß¡£Òò´ËÏà±È֮ϣ¬ÁìÓòÄÚÎÊ´ðϵͳÔÚijЩ·½Ãæ¾ßÓÐÆä¶ÀÌØµÄÓÅÊÆ£º

¡¡¡¡1¡¢ÓÉÓÚÁìÓòÎÊ´ðµÄרҵ×ÊÔ´ÏÞÖÆ£¬¿ÉÒÔÓ¦ÓøÃרҵµÄÁìÓò֪ʶÀ´Ìá¸ßÎÊ´ðϵͳÎÊÌâ·ÖÎöºÍ´ð°¸Ìáȡģ¿éµÄ׼ȷÂÊ¡£

¡¡¡¡2¡¢¿ÉÒÔ¸üÈÝÒ×µØÍƹã¸ÃÏÞÖÆÁìÓòÖгÉÊìµÄÎÊ´ð½â¾ö·½°¸£¬²¢½«ÆäÓ¦ÓÃÓÚÆäËûÏÞÖÆÁìÓò£¬ÀýÈçÖÇÄÜÒµÎñºÍ¹«¹²¹ÜÀí¡£

¡¡¡¡»ùÓÚÉÏÊöÓÅÊÆ£¬±¾ÎÄÒÔÐÄѪ¹ÜÄڿƳ£¼û¼²²¡ºÍÓÃҩΪÑо¿Ö÷Ì⣬ÒÔ³£¼û¼²²¡ºÍÓÃÒ©µÄÎÊÌâºÍ´ð°¸ÖªÊ¶¿â×÷Ö§³Å£¬ÎªÓû§Ìṩ"ѰҽÎÊÒ©"µÄÎÊ´ð½»»¥Ó²¼þƽ̨¡£µ±Óû§¼òµ¥µØÒÔ×ÔÈ»ÓïÑÔµÄÐÎʽ¶Ôϵͳ½øÐм²²¡ºÍÓÃÒ©µÄ×Éѯʱ£¬¸Ãϵͳ±ã»á¿ìËÙ·µ»ØÓû§ÖÃÐŶÈ×î¸ßµÄ¾«È·´ð°¸ÒÔ¹©Óû§²Î¿¼£¬Ãâ³ýÁËÓû§×ÔÉí¶Ô·±ÔÓÐÅÏ¢µÄ¼ìË÷ºÍɸѡ¹ý³Ì£¬Áî²Ù×÷¸ü¼Óʡʱ±ã½Ý£»Í¬Ê±ÀûÓÃÓïÒôʶ±ð¼¼Êõ´ïµ½×îÀíÏëµÄÈË»ú½»»¥·½Ê½£¬ÊµÏÖÓû§ºÍϵͳ֮¼äµÄ"Ò»ÎÊÒ»´ð"[7],ΪÓû§´ðÒɽâ»ó¡£

¡¡¡¡¶ø½üÄêÀ´»ùÓÚµ¥Æ¬»úÓ²¼þµÄÎÊ´ðϵͳÔÚÒ½ÁÆ¡¢½ÌÓýµÈÊÜÏÞÁìÓòµÄ³¡¾°Ó¦ÓÃÆ«ÉÙ£¬ÇÒ´ó¶àÊýϵͳµÄÑо¿ÊÇ»ùÓÚ Internet ËÑË÷ÒýÇæ£¬ÆäÎÊÌâʶ±ðÂÊºÍ´ð°¸Æ¥ÅäÂʽԲ»Ì«ÀíÏë¡£Òò´Ë±¾ÎÄÆÈÇÐÐèÒª¶Ô»ùÓÚ SPCE061A µ¥Æ¬»ú[8]µÄÖÇÄÜÓïÒôÎÊ´ð½»»¥ÏµÍ³½øÐÐÀíÂÛºÍʵ¼ùµÄÑо¿¡£

¡¡¡¡1.2 ¹úÄÚÍâÑо¿ÏÖ×´

¡¡¡¡1.2.1 ÎÊ´ðϵͳµÄ¹úÍâÑо¿ÏÖ×´

¡¡¡¡ÎÊ´ðϵͳµÄÀúÊ·¿ÉÒÔ×·Ëݵ½ 1950 Äê´úÓÉ Turing ÔÚÂÛÎÄ¡¶ComputingMachinery and Intelligence¡·[9]ÖÐÌá³öµÄ"»úÆ÷ÖÇÄÜ"¸ÅÄî¡£´ÓÄÇʱÆð£¬ÎÊ´ðϵͳµÄ·¢Õ¹¿ÉÒÔ´óÖ·ÖΪÒÔÏÂËĸö½×¶Î¡£

¡¡¡¡µÚÒ»½×¶ÎÊÇ 1960 Äê´ú»ùÓÚģʽƥÅäµÄר¼Ò¿â£¬ÀýÈç LUNAR,MACSYMA,BaseBall µÈ¡£´ËÀàϵͳµÄÌØµãÊÇËü¿ÉÒÔͨ¹ý×ÔÈ»ÓïÑÔÍê³ÉÎʴ𣬵«¾ßÓÐ×Ô¶¯»ñȡ֪ʶµÄ¹¦ÄÜÈÔ´æÔÚÆ¿¾±¡£Í¬Ê±£¬ÓÉÓÚʹÓö¨ÖÆÄ£°åµÄ·½·¨ÏÞÖÆ£¬µ¼ÖÂÖªÊ¶Ãæ¸²¸ÇÂʵÍ£¬²»Ò×À©Õ¹¡£

¡¡¡¡µÚ¶þ½×¶ÎÊÇ 1990 Äê´ú»ùÓÚÐÅÏ¢¼ìË÷¼¼ÊõµÄÎÊ´ðϵͳ£¬ÀýÈç Textract,Webclopedia ºÍ TREC µÄ QA Track[10]µÈÑÜÉúµÄÆÀ¹Àϵͳ£¬Æä»ù´¡Êý¾ÝÖ÷ÒªÊǷǽṹ»¯µÄԭʼÎĵµ£¬ÍøÒ³ºÍÆäËû×ÔÓÉÎı¾¡£ÕâÀàϵͳµÄÌØµãÊDz»ÐèÒª½¨Á¢´ó¹æÄ£µÄ֪ʶ¿â£¬µ«ÊDz»Äܱ£Ö¤Ïà¶ÔÓïÒôÊý¾ÝµÄ׼ȷÐÔ¡£

¡¡¡¡µÚÈý½×¶ÎÊÇ 2000 Äê´ú»ùÓÚÍøÂçËÑË÷µÄÎÊÌâ½â´ðϵͳ¡£µäÐ͵Äϵͳ£¬ÀýÈçSTART,Encart,ASKJeeves µÈ[11]ͨ¹ý·ÖÎöÍøÒ³½«´ð°¸·µ»Ø¸øÓû§¡£START [12]ÊÇÊÀ½çÉϵÚÒ»¸ö»ùÓÚ WEB µÄÎÊ´ðϵͳ¡£ËüÊÇÓÉÂéÊ¡Àí¹¤Ñ§Ôº¼ÆËã»ú¿ÆÑ§ÓëÈ˹¤ÖÇÄÜʵÑéÊÒÁªºÏ¿ª·¢µÄ£¬ÆäÖ÷Òª´´½¨ÕßÊÇ Boris Katz.ËüÓë½öÌṩһϵÁнá¹ûµÄÐÅÏ¢¼ìË÷ϵͳ²»Í¬µÄµØ·½ÔÚÓÚ¸ÃϵͳÖÂÁ¦ÓÚΪÓû§Ìṩ"×î׼ȷµÄ´ð°¸",Ŀǰ¸Ãϵͳ¿ÉÒԻشðÓйصØÀí£¬µçÓ°£¬ÈÎÎñºÍ´ÊµäµÈÁìÓò֪ʶÄÚÊýÒÔÍò¼ÆÀàÎÊÌâ¡£STAR»áÓÅÏÈʹÓÃ×Ô¼ºµÄÁ½¸öÊý¾Ý¿â½øÐд𰸼ìË÷£¬Èç¹ûÎÊÌâÄÜÔÚÊý¾Ý¿âÖвéѯ²¢Æ¥ Å䣬Ôò»áÖ±½Ó·µ»Ø´ð°¸£»·ñÔò£¬Ëü½«ÌáÈ¡¹Ø¼ü×Ö²¢·µ»ØÏà¹ØµÄÍøÒ³Á´½Ó¡£Ó봫ͳµÄËÑË÷ÒýÇæ²»Í¬£¬ÕâÖÖÀàÐ͵Äϵͳͨ³£»á¶ÔÓû§µÄÎÊÌâ½øÐÐdz²ãÓïÑÔ·ÖÎö£¬²¢¸ù¾ÝÊÖ¶¯Î¬»¤µÄÄ£°å¿â½«ÓïÒå×î½Ó½üµÄ´ð°¸·µ»Ø¸øÓû§¡£

¡¡¡¡µÚËĽ׶ÎÊÇ 2010 Äê´ú³öÏֵĻùÓÚ֪ʶͼÆ×µÄÎÊ´ðϵͳ£¬Æäµ×²ãÊÇÅÓ´óµÄ֪ʶ¿â¡£µäÐ͵Äϵͳ°üÀ¨ IBM Wason ºÍ WolframlAlpha.WolframlAlpha ÊÇÓÉ StephenWolfram ¿ª·¢µÄÐÂÒ»´ú֪ʶ¼ÆËãÒýÇæ¡£ËüÓë Google ËÑË÷ÀàËÆ£¬µ«Á½ÕßÔËÐлúÖÆ´æÔÚ²îÒ죬ÇÒÁ½Õß×î´óµÄ¼ìË÷Ч¹û²îÒìÔÚÓÚËü¿ÉÒÔ¸ù¾ÝÎÊÌâÖ±½Ó¸ø³öÕýÈ·´ð°¸¡£

¡¡¡¡WolframlAlpha Ê×ÏÈʹÓù«¹²ºÍÊÚȨ×ÊÔ´×÷ΪÊý¾Ý»ù´¡£¬Æä´Îͨ¹ýÊý¾ÝÍÚ¾òÀ´¹¹½¨Òì³£´óÇÒÓÐ×éÖ¯µÄÊý¾Ý¿â£¬×îºóʹÓø߼¶×ÔÈ»ÓïÑÔËã·¨¶Ô²éѯÊý¾Ý½øÐд¦Àí¡£

¡¡¡¡»ùÓÚ֪ʶ¿âµÄÎÊ´ðÊǵ±½ñÎÊ´ðϵͳµÄ·¢Õ¹Ç÷ÊÆ¡£ÆäÖпª·ÅÓò֪ʶ¿âÔÚÒµ½çÒѾ­³öÏֺܶà³ÉÊìµÄ·¢¿ªÆ½Ì¨£¬Èç YAGO [13],DBpedia [14],FreeBase [15],NELL[16]µÈ£¬Í¬Ê±ÊÜÏÞÁìÓò֪ʶ¿âÔÚÈÕÒæ¾ºÕùµÄ¼¤ÁÒ»·¾³ÏÂÒ²Ó¿ÏÖ³ö´óÁ¿Ïà¹ØµÄÑо¿¡£

¡¡¡¡Frank µÈ[17]Ìá³öÁËÒ»ÖÖ»ùÓÚ½¡×³ÓïÒå·ÖÎöµÄ»ìºÏ NLP ϵͳ¼Ü¹¹£¬ÆäÑо¿Ã÷È·ÁË×ÔÈ»ÓïÑÔ´¦ÀíºÍ֪ʶÌáȡ֮¼äµÄ¹ØÏµ£¬²¢×îÖÕʵÏÖÁËÁìÓòÄڽṹ»¯ÖªÊ¶¿âµÄÎʴ𡣸÷½·¨²»ÐèҪ̫¶àµÄÁìÓò֪ʶ£¬ÎÊÌâ·ÖÎö¹ý³Ì»¹½«²úÉú¸ßÖÊÁ¿µÄÁ¿»¯Ô­ÐÍÎÊÌ⣬²¢ÇÒ´ÓÔ­ÐÍÎÊÌâÉú³ÉµÄ²éѯÓï¾äÖÐÓÐЧµØ¼ÆËã֪ʶ¿âµÄ×îСÉú³ÉÊ÷¡£ZhangµÈÈË[18]Ìá³öÁËÒ»ÖÖÕûÊýÏßÐԹ滮£¨ILP£©Ä£ÐÍ£¬¸ÃÄ£Ðͽ«¶ÔÆë¹¹ÔìºÍ²éѯ¹¹Ôì¹ý³Ì¼¯³ÉÔÚÒ»Æð£¬´Ó¶øÏµÍ³µØ½â¾öÁ˶à¸ö֪ʶ¿âµÄÁªºÏ²éѯÎÊÌâ¡£Fader µÈÈË[19]Ê×ÏȽ«ÎÊÌâ·Ö½âΪ×ÓÎÊÌ⣬Ȼºó¾­¹ýÎÊÌâÀ©Õ¹£¬²éѯÉú³ÉµÈ²½Ö裬½áºÏ֪ʶ¿âÖеÄÓïÁÏ¿âºÍÊý°ÙÍòÌõ²éѯƥÅ乿Ôò£¬ÒÔ¾«ÐĹ¹½¨µÄ֪ʶ¿âΪ»ù´¡£¬³éÈ¡³ö WEB ֪ʶ¿âµÄÎÊÌâºÍ´ð°¸¡£

¡¡¡¡1.2.2 ÎÊ´ðϵͳµÄ¹úÄÚÑо¿ÏÖ×´

¡¡¡¡Óë¹úÍâÑо¿Ê±ÆÚÏà±È£¬¹úÄÚÑо¿Æð²½Ïà¶Ô½ÏÍí£¬Ö÷ÒªÊÇÓÉÖÐÎÄ×ÔÈ»ÓïÑÔ±í´ïµÄÁé»îÐÔ¾ö¶¨¡£Ê×ÏÈ£¬ÖÐÎÄ×ÔÈ»ÓïÑÔ´¦Àí¹¤¾ßÎÞ·¨´Ó¸ù±¾ÉϽâ¾öÕâÒ»ÎÊÌ⣬¶øÇÒºÜÄÑÖ±½ÓÍêȫӦÓÃijһ³ÉÊìµÄ¹úÍâ¼¼Êõ£»Æä´Î£¬ÖÐÎÄÁìÓòµÄÓïÁÏ¿â·Ç³£È±Ê§£¬Í¬Ê±È±·¦ÏàÓ¦µÄÆÀ¹À»úÖÆ¡£

¡¡¡¡¸ù¾Ý"Agent ºÍ±¾ÌåÂÛÊdz£Ê¶ÖªÊ¶¿âµÄÁ½´óÖ§Öù"µÄ¹Ûµã£¬¹úÄڵĽÈêÁåµÈ[20]½¨Á¢ÁËÒ»¸ö´óÐͳ£Ê¶ÖªÊ¶¿â" Å̹Å",²¢ÔÚÆä»ù´¡ÉϹ¹½¨ÁËÒ»¸ö×Ô¶¯Í¨»°ÏµÍ³¡£´ËÍâÓÉÖйú¿ÆÑ§Ôº¼ÆËã¼¼ÊõÑо¿ËùµÄ²Ü´ç¸ùµÈ[21]Ñз¢µÄ NKI£¨¹ú¼Ò֪ʶ»ù´¡ÉèÊ©£©ÖªÊ¶ÎÊ´ðϵͳ°üº¬µØÀíºÍÈËÎÄ 16 ¸öѧ¿ÆÁìÓòµÄ 23 ¸ö֪ʶ¿â£¬²¢Ö§³Ö×ÔÈ»ÓïÑÔ²éѯ¡£ÔÙÕßÖîÈç°Ù¶ÈÖ®ÀàµÄËÑË÷ÒýÇæÒ²ÒѾ­¿ªÊ¼»ùÓÚ֪ʶͼÆ×Ìṩ¼òµ¥µÄ×ÔÈ»ÓïÑÔÎÊÌâ´ð°¸¼¯½øÐÐÑо¿¡£ASQA[22]ÊÇÖйų́ÍåµÄÖÇÄÜÖÐÎÄÎÊ´ðϵͳ£¬¸Ãϵͳ°üÀ¨ÈËÎµØµã£¬×éÖ¯£¬Ê±¼ä£¬ÊýÁ¿ºÍ artifact µÄ fatctiod ÀàµÈÖØÒªÎÊÌâ¡£¸Ã֪ʶ¿âÖ÷ÒªÊÇ´Ó 1998-1999 Äê CIRB[23]·¢±í¼¯ºÏÖÐÌáÈ¡µÄ£¬²¢ÇÒÔÚÊÜÏÞÁìÓòÖУ¬´ó¶àÊýÑо¿ÊÇ»ùÓÚÉçÇøÎÊ´ðºÍ»ùÓÚ FAQ µÄÎÊ´ð[24].µ±È»£¬Ò²´æÔÚһЩ»ùÓÚ²¿·ÖʵÑé֪ʶµÄÎÊ´ðϵͳ£¬ÀýÈç»ùÓÚʳÎï±¾ÌåÂÛºÍũҵ±¾ÌåÂÛµÄÎʴ𣬵«ÊÇÕâÀàϵͳ»ù´¡Êý¾ÝºÜÉÙ£¬ÉÐδÔÚʵ¼ùÖеõ½Ó¦Óá£

¡¡¡¡×ÛÉÏËùÊö£¬ÎÊ´ðϵͳÔÚËÑË÷ÒýÇæ·½ÃæµÄ¼¼ÊõÒѾ­Ç÷ÓÚ³ÉÊ죬µ«ÊÇʵÏÖÒ»¸öÈ«ÃæµÄÖªÊ¶ÍøÂç½á¹¹µÄÎÊ´ðÈÔÊÇÒ»¸öÂþ³¤¶ø¼è¾ÞµÄ¹ý³Ì£¬È±·¦µ×²ã»ù´¡Êý¾ÝÖ§³ÅµÄÏÖ×´ÈÔµ¼ÖÂÐí¶àʵ¼ÊµÄÓ¦ÓÃÁìÓòÊÜÏÞ¡£¶Ô´Ë£¬±¾ÎÄͨ¹ý»ùÓÚÍøÂçÅÀ³æµÄ·½·¨»ñÈ¡Ïà¹ØÁìÓòȨÍþµÄ¡¢Ïà¶ÔÍ걸µÄ֪ʶ¿â×÷Ö§³Å£¬Ó¦ÓÃÓÚ½ÌÓýºÍÒ½ÁƵÈÏÞÖÆÁìÓò£¬ÒÔϱãÊÇ»ùÓÚ SPCE061A µ¥Æ¬»úµÄÖÇÄÜÓïÒôÎÊ´ð½»»¥ÏµÍ³µÄÏêϸÃèÊö¡£

¡¡¡¡1.3 ÎÊ´ð½»»¥ÏµÍ³¸ÅÊö

¡¡¡¡ÎÊ´ð½»»¥ÏµÍ³°´Õկ书ÄܵĵݽøË³Ðò¿ÉÒÔ»®·ÖΪÈý¸öÄ£¿é£ºÎÊÌâÀí½âÄ£¿é-Àí½âÓû§Òâͼ£¬ÐÅÏ¢¼ìË÷Ä£¿é-¼ìË÷ÏàËÆÎĵµ£¬´ð°¸Ìáȡģ¿é-ÌáÈ¡×ȷ´ð°¸¡£

¡¡¡¡ÎÊÌâÀí½âÊÇÖ¸´ÓÓû§Ìá³öµÄÎÊÌâ×ÅÊÖ£¬Àí½â³öÓû§ÎÊÌâµÄÕæÊµÒâͼ£¬½øÒ»²½×ª»¯Îª¼ÆËã»úÄܹ»Àí½âµÄ×ÔÈ»ÓïÑÔ£»ÐÅÏ¢¼ìË÷ÊÇÖ¸´ÓÏÖ´æÖªÊ¶¿âµÄÎĵµ£¨ÀýÈç¸÷ÖÖÀëÏßÍøÒ³Áбí£¬Îı¾Áбí£¬ÎļþÎĵµµÈ£©ÖмìË÷³öÉæ¼°´øÓÐÓû§ÕæÊµÒâͼµÄ¹Ø¼üÎĵµ£¬²¢½«ÕâЩÎĵµÒÀ¾ÝÏàÓ¦¼ìË÷¹æÔò×éºÏÔÚÒ»Æð£¬ÀûÓüìË÷Ïà¹Ø¶È°´ÕմӸߵ½µÍµÄ˳Ðò½«½á¹û·µ»Ø¸øÏµÍ³¡£´ð°¸ÌáÈ¡ÊÇÖ¸ÒÔÐÅÏ¢¼ìË÷ÌṩµÄÎı¾Îª»ù´¡£¬ÒÀ¾ÝÏà¹ØËã·¨¼ÆËã³öÓëÓû§µÄÎÊÌâÆ¥ÅäÖÃÐŶÈ×î¸ßµÄ´ð°¸¾ä×Ó£¬¼Ì¶ø´ïµ½ÒÔ×ȷµÄ´ð°¸Ìṩ¸øÓû§¡£

¡¡¡¡ÎÊÌâÀí½âÊÇ×Ô¶¯ÎÊ´ðϵͳÖд¦ÀíÓû§ÎÊÌâµÄÊ×Òª²½Ö裬ÎÊÌâÀí½âÄ£¿éÌáÈ¡µÄ¹Ø¼ü´Ê½«×÷ΪÐÅÏ¢¼ìË÷Ä£¿éµÄÊäÈ룬¶øÐÅÏ¢¼ìË÷Ä£¿éµÃµ½µÄÏàËÆÀàÎĵµÓÖ×÷Ϊ´ð°¸Ìáȡģ¿éµÄÄ¿±ê£¬Òò´ËÎÊÌâÀí½âµÄ׼ȷÐÔ½«Ö±½Ó¾ö¶¨ÏµÍ³µÄÐÔÄÜ¡£ÎÊÌâÀí½âµÄÊ×Òª¹¤×÷ÊǶÔÓû§Ìá³öµÄÎÊÌâ½øÐдʷ¨·ÖÎö£¬Í¨¹ýÎʾä´ÊÐԷִʺ;䷨½á ¹¹·ÖÎöµÄ½á¹ûÈ·¶¨Óû§ÎÊÌâÀàÐÍ£¨¸Ã¹ý³Ì¼´ÎªÎÊÌâ·ÖÀࣩ£¬È»ºó´ÓÓû§ÎÊÌâÖÐÌáÈ¡¹Ø¼ü×ÖÒÔ¼°½áºÏÎÊÌâÀàÐͺÍÏÖÓÐ֪ʶ¿âÀ´À©Õ¹¹Ø¼ü×Ö¡£µ«Ö»Óе±¹Ø¼ü´ÊµÄ¶¨ÒåÀ©Õ¹µ½Ò»¶¨³Ì¶Èʱ£¬²ÅÄÜΪºóÐøµÄÐÅÏ¢¼ìË÷Ìṩ°ïÖú¡£´Ê·¨·ÖÎö°üÀ¨¾ä×ӷֶκʹÊÐÔ±ê×¢µÄ´¦Àí£¬´ÊÐÔ±ê¼ÇΪ֮ºóµÄ¹Ø¼ü´ÊÌáÈ¡µì¶¨»ù´¡¡£ÔÚÌáÈ¡¹Ø¼ü´Êʱ£¬Í¨³£½öÌáÈ¡¶¯´Ê£¬Ãû´ÊºÍÓïÒô´ÊµÄÆäËû²¿·Ö£¬Õâ¾ÍÒâζ×ÅÔÚ×Ô¶¯ÎÊ´ðϵͳÖУ¬²»ÄÜʹÓÃÏàͬµÄ±ê×¼À´´¦ÀíËùÓÐÀàÐ͵ÄÓû§ÎÊÌ⣬Òò´ËÓбØÒª¶ÔÎÊÌâ½øÐзÖÀࡣͬʱ£¬Óû§ÎÊÌâÖаüº¬µÄËùÓе¥´Ê¶¼²»ÄÜÓÃ×÷ÐÅÏ¢¼ìË÷µÄ¹Ø¼ü×Ö£¬ÀýÈçÊôÓÚÍ£ÓôʵÄijЩÓïÆø´Ê£¬ÖîÈç"°¡","Ŷ","Âð"µÈÒÉÎÊ´Ê¿ÉÒÔÖ±½Óɾ³ý¡£ÔÙÕßÔÚÆ¥ÅäÓû§¶ÌÎÊÌâÎı¾Ê±£¬Í¨³£ÃæÁÙÏàͬÓïÒåµÄµ¥´ÊºÍ±í´ïÐÎʽ²»Î¨Ò»µÄÇéÐΣ¬Òò´ËÐèÒªÊʵ±µØÀ©Õ¹¹Ø¼ü×ÖÒÔÌá¸ßÐÅÏ¢¼ìË÷µÄ׼ȷÐÔ¡£

¡¡¡¡ÎÊÌâÀí½âµÃµ½µÄ¹Ø¼ü´Ê½«Ö±½Ó×÷ΪÐÅÏ¢¼ìË÷µÄÊäÈ룬×Ô¶¯ÎÊ´ðϵͳÖÐÐÅÏ¢¼ìË÷µÄÖ÷Òª¹¦ÄÜÊÇÌṩ¼ìË÷Ŀ¼ºÍ·½·¨ÒÔ»ñÈ¡¿ÉÄܰüº¬Óû§Ìá³öµÄÎÊÌâ´ð°¸µÄÎĵµ»ò¶ÎÂäÐÅÏ¢¡£ÔÚÐÅÏ¢¼ìË÷¹ý³ÌÖУ¬ÏµÍ³¸ù¾ÝÁìÓò¡¢´ÊÐÔµÈÐÅÏ¢µÄ²»Í¬£¬¶Ô²»Í¬µÄ¹Ø¼ü´Ê¸³Ó費ͬµÄÈ¨ÖØ£¬Í¨¹ý¼ÆËãÕû¸öÎĵµÖйؼü´ÊµÄÈ¨ÖØ£¬¼´ÎÊÌâÓëÎĵµÁ½ÕßÖ®¼äµÄÏà¹Ø³Ì¶È£¬µÃµ½ÎĵµµÄ·ÖÊý--ÎĵµºÍÓû§µÄÎÊÌâÏàËÆ¶È¡£

¡¡¡¡ÓÉÓÚ×Ô¶¯ÎÊ´ðϵͳҪÇó¼ò½àÃ÷Á˵Ĵ𰸲ÅÄÜ·µ»Ø¸øÓû§£¬Òò´ËÐÅÏ¢¼ìË÷Ä£¿é½öÌṩ´óÁ¿ÓëÓû§ÎÊÌâÏà¹ØµÄÎĵµ¡£Êµ¼ÊÉÏ£¬Óû§ÎÊÌâµÄ´ð°¸ÓÐʱ¿ÉÄÜÖ»ÊÇÒ»¸ö¾ä×Ó£¬¼¸¸öµ¥´Ê»òÒ»¸ö¶ÌÓÀýÈç"ÖйúµÄÓ¢ÎÄÊÇʲô£¿"Õâ¸öÎÊÌâµÄ´ð°¸Ö»ÓÐÒ»¸öµ¥´Ê"China".´Ëʱ´ð°¸ÌáÈ¡±ãÊÇÎÊ´ðϵͳ¹¦ÄÜʵÏÖµÄ"Âä½Åµã",Ê×ÏȸÃÄ£¿é½ÓÊÕÎÊÌâÀí½âÄ£¿éÖеõ½µÄ¶ÎÂäÐÅÏ¢£¬²¢´ÓÖÐÌáÈ¡³ö n ×飨n ÓÉ´°¿ÚÄ£ÐÍÉèÖõĿí¶È¾ö¶¨£©¹Ø¼ü´Ê¶ÌÓ¶ÔÓ¦Éú³É n ×éºòÑ¡´ð°¸¼¯£¬È»ºó¸ù¾ÝËã·¨´ÓÕâ n×éºòÑ¡´ð°¸¼¯ÖÐÌáÈ¡³öÒ»×é×î¼Ñ´ð°¸¼´¿É¡£

¡¡¡¡1.4 ³£¼ûµÄÎÊ´ð

¡¡¡¡½»»¥ÏµÍ³¸ù¾ÝËùÊô´ð°¸µÄ֪ʶÁìÓò»®·Ö£¬µ±Ç°Êµ¼ÊÓ¦ÓÃ×î¹ã·ºµÄ×Ô¶¯ÎÊ´ðϵͳ±ãÊÇ»ùÓÚÏÖÓÐ֪ʶ¿â»ò֪ʶͼÆ×[25]µÄ×Ô¶¯ÎÊ´ðϵͳºÍ»ùÓÚ Internet ËÑË÷ÒýÇæµÄ×Ô¶¯ÎÊ´ðϵͳ¡£ÕâÁ½Õߵı¾ÖÊÇø±ðÔÚÓÚ£ºÇ°Õß½¨Á¢ÁËÊôÓÚ¸ÃÌØ¶¨ÁìÓòµÄÀëÏß֪ʶ¿â£¬¶øºóÕßÔòÒÀÀµÓÚÍøÕ¾·þÎñÆ÷µÄºǫ́Êý¾Ý¿â×ÊÔ´¡£Í¨³£°üº¬Ò»¸ö»ò¶à¸öÈ˹¤¹¹½¨µÄ֪ʶ¿â£¬²¢Í¨¹ý¾ä×ÓÏàËÆ¶È¼ÆË㣬ÐÅÏ¢¼ìË÷£¬´ð°¸ÌáÈ¡µÈ·½·¨»ñµÃÓû§ÎÊÌâ´ð°¸µÄ×Ô¶¯ÎÊ´ðϵͳ£¬±»ÈÏΪÊÇÒ»ÖÖ»ùÓÚ֪ʶ¿â»ò֪ʶͼÆ×µÄ×Ô¶¯ÎÊ´ðϵͳ¡£ÓÉÓÚͨ¹ý´¿È˹¤×ܽáÍêÉÆÖªÊ¶ÕâÖÖ·½Ê½ÏԵùý³ÌÒì³£·±Ëö£¬¶øÇÒËðºÄ´óÁ¿×ÊÔ´£¬Æä֪ʶ¿âµÄÍêÕûÐÔºÍ׼ȷÐÔÓÖÊǸÃ×Ô¶¯ÎÊ´ðϵͳµÄ¹Ø¼ü£¬Òò´Ë¿ª·¢Õ߯ձéÑ¡Ôñ¹¹½¨ÖªÊ¶Í¼Æ×ÕâÖÖ·½Ê½À´´ïµ½ÍêÉÆµ×²ãÊý¾Ý¿âµÄÐèÇó¡£

¡¡¡¡Ä¿Ç°»ùÓÚ֪ʶ¿âµÄÎÊ´ðϵͳÔÚÒ½ÁÆ¡¢½ÌÓý¡¢ÎÀÉúµÈÁìÓòµÃµ½¹ã·ºÓ¦Óã¬ÆäÖÐFAQ£¨»ùÓÚ³£ÎÊÎÊÌâ¿â£©µÄ×Ô¶¯ÎÊ´ðϵͳ±ãÊǵäÐ͵Ĵú±í¡£Æä¹¤×÷Ô­ÀíÊÇ£ºFAQÖд洢ÁË´óÁ¿µÄ³£¼ûÎÊÌâ¼°ÆäÏàÓ¦µÄ´ð°¸£¬µ±Óû§ÏòϵͳÌá½»ÎÊÌâʱ£¬ÏµÍ³Ê×ÏȼÆËãÓû§ÎÊÌâÓë´æ´¢ÔÚ³£ÎÊÎÊÌâÊý¾Ý¿âÖеÄÎÊÌâÖ®¼äµÄ¾ä×ÓÏàËÆ¶È£¬µ±Á½¸ö¾ä×ÓÏàËÆ¶È´óÓÚϵͳÉèÖõÄãÐֵʱ£¬½«Óë FAQ ÖÐ×îÏàËÆÎÊÌâ¶ÔÓ¦µÄ±ê×¼´ð°¸Ö±½ÓÌṩ¸øÓû§¡£

¡¡¡¡Wataru Sakata µÈÈË[26]ÔÚ 2019 ÄêÌá³öÁËÒ»ÖÖ²éѯÎÊÌâÏàËÆÓë»ùÓÚ Bret Ä£ÐÍ[27]µÄ FQA ¼ìË÷ϵͳ¡£¸ÃϵͳÒԵط½Õþ¸®³£¼ûÎÊÌâ×÷Ϊ²âÊÔÊý¾Ý¼¯£¬²ÉÓÃÁËÒ»ÖÖ»úÆ÷ѧϰÖÐÎ޼ලµÄ·½·¨¸Ä½øÐÅÏ¢¼ìË÷¹ý³ÌÖмÆËã²éѯÓëÎÊÌâÖ®¼äÏàËÆ¶ÈµÄËã·¨¡£Ïà±ÈÓÚ´«Í³µÄ FAQ ¼ìË÷Ä£ÐÍ£¬ËûÃÇÊ״ν«Óû§²éѯ£¨q£©Óë³£ÎÊÎÊÌ⣨Q£©Ö®¼äµÄÏà¹ØÐÔÒÔ¼°²éѯÎÊÌ⣨q£©Óë´ð°¸£¨A£©Ö®¼äµÄÏà¹ØÐÔ×ۺϵØÄÉÈëÆÀ²âϵͳµÄ±ê×¼ÖС£ÒÔÍùµÄ¼ìË÷Ä£ÐͶ¼Ö»ÄÜʹÓà q Óë QA ¶ÔÖ®¼ä¾ßÓÐÏà¹ØÐÔ±êÇ©µÄÊý¾Ý¼¯£¬Ö»ÒòÆä¾ßÓдú±íÐÔÌØÕ÷£¬ÄÜ·´Ó¦ÏµÍ³¼ìË÷ÐÅϢʱµÄ×ÜÌåÐÔÄÜÖ¸±ê¡£¶øÊµ¼ÊÔÚ¹¹ÔìÕâЩ±ê¼ÇÊý¾ÝµÄ¹ý³ÌÖÐÐèҪͶÈë´óÁ¿×ÊÔ´£¬Æä½á¹ûÍùÍù²»ÄÜ´ïµ½Ô¤ÆÚµÄÉèÏ룬ËûÃǵķ½·¨²»½öÓÐЧµØ½â¾öÁËÕâһͨ²¡£¬¶øÇÒÏÔʾÁ˸ø¶¨ q µÄ FAQ ´ð°¸µÄºÏÀíÐԺʹ´ÐÂÐÔ¡£Òò´ËÂÛÎÄÀûÓà localgovFAQ£¨´ÓµØ·½Õþ¸®³£¼ûÎÊÌâ½â´ðÒ³ÃæÊÕ¼¯µÄÖÊÁ¿¼ì²é¶Ô£©ºÍ StackExchange£¨FAQ µÄ¹«¿ªÊý¾Ý¼¯£©Á½¸öÊý¾Ý¼¯À´ÑµÁ·Ä£ÐÍ£¬×îÖÕʹÓà Bert ¼ÆËã q-A µÄÏà¹ØÐÔ£¬½«ÅÅÃû½Ï¸ßµÄÖÊÁ¿¼ì²é¶ÔÓÃ×÷ËÑË÷½á¹û£¬Ö¤Ã÷Á˸ø¶¨ q µÄ FAQ ½«Ã÷ÏÔÌá¸ßÎÊ´ðϵͳÖÐÐÅÏ¢¼ìË÷Ä£¿éµÄ¼ìË÷ЧÂÊ¡£

¡¡¡¡»ùÓÚInternetËÑË÷ÒýÇæµÄ×Ô¶¯ÎÊ´ðϵͳÔÚÈÕ³£Éú»îÖÐÆÕ±éµÃµ½Ó¦Óá£ÏñBaidu¡¢Google¡¢Bing µÈËÑË÷ÒýÇæ£¬¶¼ÓÐÆäÍ걸µÄÊý¾Ý¿â×÷Ö§³Å£¬½«ÒÀ¿¿ÍøÂçÅÀ³æµÃµ½µÄ´óÊý¾ÝÐÅϢͨ¹ýÍøÒ³´æ´¢µ½·þÎñÆ÷ÖУ¬Óû§Í¨¹ýÏò·þÎñÆ÷·¢ËÍÇëÇ󣬷ÃÎÊÍøÒ³Á´½ÓµÄ·½Ê½µÃµ½ÎÊÌâËÑË÷µÄ´ð°¸£¬ÕâÀàϵͳÍùÍù²¢²»ÄÜÖ±½ÓµÃµ½Óû§×îÀíÏëµÄ´ð°¸£¬µ±È»Ëæ×ÅÈ˹¤ÖÇÄܺÍÉî¶Èѧϰ¼¼ÊõÔÚÆäÁìÓòµÄ¹ã·ºÓ¦Ó㬽«Êý¾Ý¿âÖÐÅÓ´óµÄÊý¾Ý¼¯½øÐÐÄ£ÐÍѵÁ·ºÍÉî¶Èѧϰ֮ºó£¬ÏµÍ³¿ÉÒÔʵÏÖ¶ÔÓû§ÕýÈ·´ð°¸µÄ·¶Î§Ô¤²â£¬¼«´óµØÌá¸ßÁ˼ìË÷ЧÂÊ¡£

¡¡¡¡Eric ÔÚ 2018 ÄêÉè¼Æ³ö»ùÓÚ¶àËÑË÷ÒýÇæºÍÉî¶ÈѧϰµÄ×Ô¶¯ÎÊ´ð»úÆ÷ÈË£¬ÏµÍ³Ä¿Ç°ÒÑʵÏÖ֪ʶÎÊ´ð¡¢ÏÐÁÄ¡¢Ô˼۲éѯµÈ¹¦ÄÜ¡£»ùÓÚ¶àËÑË÷ÒýÇæÊÇΪÁ˵õ½ÐÅÏ¢¸üÈ«ÃæµÄÓïÁϿ⣬ÀûÓÃËÑË÷ÒýÇæ¹ÌÓеļ¼Êõ¿ò¼Ü¶Ô»ñÈ¡µÄÐÅÏ¢½øÐгõ²½É¸Ñ¡ºÍͳһ¸ñʽ»¯¹ÜÀí¡£»ùÓÚÉî¶ÈѧϰÊÇΪÁËѵÁ·³öÄÜ´ÓÊý¾ÝÁ¿ÅÓ´óµÄÓïÁÏ¿âÖпìËÙѡȡÕýÈ·´ð°¸µÄÄ£ÐÍ¡£Ê×ÏÈ×÷ÕßÀûÓÃÍøÂçÅÀ³æ¼¼Êõ´Ó°Ù¶È¡¢¹È¸è¡¢ÑÅ»¢¡¢Î¢Èí¡¢°¢Àï°Í°ÍÎå´óËÑË÷ÒýÇæÖÐÊÕ¼¯ÓïÁÏÐÅÏ¢£¬È»ºó½«ÕâЩ×ÊԴͳһÕûÀí¹¹½¨ÎÊ´ð¶Ô×é³ÉÓïÁϿ⣬²¢½«ÓïÁÏ¿âµÄºóÐø²Ù×÷·ÖΪѵÁ·¼¯¡¢¿ª·¢¼¯ºÍ²âÊÔ¼¯Èý¸ö²¿·Ö¡£Æä´Î×÷ÕßÔÚѵÁ·ÏµÍ³Ê±½«ºòÑ¡´ð°¸¼¯´ÓÓïÁÏ¿âÖгéÈ¡³öÀ´£¬Í¨¹ý°ÑËùÓд𰸴æ·Åµ½¶à¸öÏòÁ¿¿Õ¼äÖÐʵÏÖ·Ö×é·ÖÀàµÄ¹¦ÄÜ£¬Í¨¹ýÔÚÓïÁÏ¿âÖвɼ¯Ñù±¾£¬ÊÕ¼¯Ã¿¸öÎÊÌâ¶ÔÓ¦µÄ 500 ¸ö´ð°¸¼¯ºÏ£¬Ëæ»úÌôÑ¡³öһЩ¸ºÏòÑù±¾´æ·ÅÔÚ¼¯ºÏÖÐÒÔÍ»³öÕýÏòÑù±¾µÄ×÷Óá£×îºó×÷ÕßÀûÓà CNN ¾í»ýÉñ¾­ÍøÂç[28]¶ÔÎı¾ÐòÁеÄÈ«¾ÖÐÅÏ¢½øÐÐÎÊÌâºÍºòÑ¡´ð°¸µÄ cos ¾àÀë¼ÆË㣬¾àÀëԽСÔòÏàËÆ¶ÈÔ½´ó£¬ÒÔ´ËʵÏÖ¶ÔÕýÈ·´ð°¸µÄÔ¤²â¡£

¡¡¡¡Í¬Ê±°Ù¶ÈÔÚ½ñÄê 7 Ô嵀 AI ¿ª·¢Õß´ó»áÉÏ¿ªÔ´ÁËÊ׸ö¹¤Òµ¼¶»ùÓÚÓïÒ弯ËãµÄFAQ ÎÊ´ðϵͳ AnyQ,Õë¶Ô FAQ ÎÊ´ðµÄ¸÷ÖÖ¼¼ÊõÄÑÌâ¸ø³öÁ˸ßЧµÄ½â¾ö·½°¸¡£

¡¡¡¡Ê×ÏÈÔÚ¿ò¼ÜÉè¼Æ·½Ã棬AnyQ ²ÉÓÃÅäÖû¯ºÍ²å¼þ»¯µÄ·½Ê½£¬ÆäËùÓй¦Äܶ¼ÊÇÒÔ²å¼þÐÎʽ½øÐÐÅäÖã¬Èç Question ·ÖÎö·½·¨¡¢¼ìË÷·½Ê½¡¢Æ¥ÅäÏàËÆ¶È¡¢ÅÅÐò·½Ê½µÈ¡£

¡¡¡¡ÒÔÏàËÆ¶È¼ÆËãΪÀý£¬°üÀ¨×ÖÃæÆ¥ÅäÏàËÆ¶È Cosine[29]¡¢Jaccard[30]¡¢BM25[31] µÈ£¬Í¬Ê±°üº¬ÁËÓïÒ寥ÅäÏàËÆ¶È¡£AnyQ ϵͳµÄÅäÖû¯ºÍ²å¼þ»¯Éè¼Æ£¬Ê¹Óû§¿ÉÒÔ×ÔÖ÷ÅäÖÃÑ¡ÔñϵͳµÄ¹¦ÄÜ£¬´ËÍ⣬Óû§Ò²¿É¸ù¾Ý³¡¾°ÐèÇó±ã½ÝµØ½«¶¨ÖÆ»¯µÄ¹¦ÄܼÓÈëϵͳ£¬ÊµÏÖÁËϵͳµÄÁé»îÐԺͶàÑùÐÔ¡£Æä´ÎÔÚÐÅÏ¢¼ìË÷·½Ã棬Óë»ùÓÚµ¹ÅÅË÷ÒýµÄ FAQ ÎÊ´ðϵͳÏà±È£¬AnyQ ²ÉÓÃÁËÓïÒå¼ìË÷¼¼Êõ£¬½«Óû§ÎÊÌâºÍ FAQ ¼¯ºÏµÄÏàËÆÎÊÌâͨ¹ýÉî¶ÈÉñ¾­ÍøÂçÓ³Éäµ½ÓïÒå±íʾ¿Õ¼äµÄÁÙ½üλÖ㬼ìË÷ʱ£¬ÏµÍ³Í¨¹ý¸ßËÙÏòÁ¿Ë÷Òý¼¼Êõ¶ÔÏàËÆÎÊÌâ½øÐмìË÷¡£ÔÙÕßÔÚÎÊÌâÏàËÆ¶ÈËã·¨·½Ã棬AnyQʹÓà SimNet ÓïÒ寥ÅäÄ£Ð͹¹½¨Îı¾ÓïÒåÏàËÆ¶È£¬ÆäÖÐϵͳ°üº¬Ò»¸ö»ùÓڰٶȺ£Á¿ËÑË÷Êý¾ÝѵÁ·µÄ SimNet-BOW Ä£ÐÍ[32],ÔÚÒ»Ð©ÕæÊµµÄ FAQ ÎÊ´ðÊý¾Ý¼¯ÉÏ£¬¸ÃÄ£ÐÍЧ¹ûÏà±È»ùÓÚ×ÖÃæµÄÏàËÆ¶È·½·¨ AUC ÌáÉý 5% ÒÔÉÏ£¬ÓÐЧ½â¾öÌØ¶¨ÁìÓòÓÉÓÚ±ê×¢Êý¾ÝÉÙ¶øÎÞ·¨ÑµÁ·³ö׼ȷÓïÒ寥ÅäÄ£Ð͵ÄÎÊÌâ¡£

¡¡¡¡×ÛÉÏËùÊö£¬Èç½ñ³£¼ûµÄÎÊ´ð½»»¥ÏµÍ³Êǽ«×ÔÈ»ÓïÑÔ´¦Àí¡¢Í³¼Æ»úÆ÷ѧϰºÍÉî¶ÈѧϰÏà½áºÏµÄ²úÎï¡£

¡¡¡¡µÚ 2 Õ ÎÊ´ð½»»¥ÏµÍ³µÄÏà¹Ø¼¼ÊõºÍËã·¨

¡¡¡¡2.1 ÓïÒôѹËõËã·¨

¡¡¡¡2.2 ÍøÂçÅÀ³æ¼¼Êõ

¡¡¡¡2.2.1 ×ÊÔ´ÅÀÈ¡

¡¡¡¡2.2.2 ×ÊÔ´´¦Àí

¡¡¡¡2.3 ¾ä×ÓÏàËÆ¶ÈËã·¨

¡¡¡¡2.4 ´ð°¸ÌáÈ¡Ëã·¨

¡¡¡¡µÚ 3 Õ ϵͳµÄÉè¼Æ

¡¡¡¡3.1 ϵͳµÄÓ²¼þÉè¼Æ

¡¡¡¡3.2 ϵͳµÄÈí¼þÉè¼Æ

¡¡¡¡3.2.1 ÓïÒôѵÁ·ºÍʶ±ð

¡¡¡¡3.2.2 ÕýÈ·´ð°¸ÌáÈ¡

¡¡¡¡3.3 ϵͳµÄ¹¤×÷Ô­Àí

¡¡¡¡3.4 ϵͳÈí¡¢Ó²¼þ½»»¥µÄʵÏÖ

¡¡¡¡µÚ 4 Õ ϵͳµÄ¹¦ÄÜʵÏÖ

¡¡¡¡4.1 ϵͳ»·¾³

¡¡¡¡4.2 ϵͳӦÓÃʵÑé

¡¡¡¡4.2.1 ʵÑé¹ý³Ì

¡¡¡¡4.2.2 Êý¾Ý·ÖÎöºÍ×ܽá

µÚ 5 Õ ×ܽáÓëÕ¹Íû

¡¡¡¡±¾ÎÄÑо¿ÁËÒ»ÖÖ»ùÓÚ SPCE061A µ¥Æ¬»úµÄÓïÒôÎÊ´ð½»»¥×°Öá£Ä¿Ç°»¹´¦ÓÚÓ¦ÓòâÊԽ׶Σ¬¸ÃÏµÍ³Éæ¼°Ò½ÁÆÁìÓòÐÄѪ¹ÜÍâ¿ÆµÄ³£¼û¼²²¡£¬ÔÚÈÕ³£Éú»îÖУ¬µ±Óû§ÒÔ×ÔÈ»ÓïÑԵķ½Ê½ÏòϵͳѯÎÊÏà¹Ø¼²²¡µÄÇé¿öºÍÓÃҩʱ£¬ÏµÍ³±ã»á¿ìËÙÒÔÓïÒôµÄ·½Ê½Ìṩ¸øÓû§×¼È·¡¢×¨ÒµµÄ´ð¸´¡£ÆÚ¼äÃâ³ýÁËÓû§×ÔÉí¶ÔÎÊÌâÐÅÏ¢µÄ¼ìË÷¹ý³Ì£¬Í¬Ê±ÒԵײ㽨Á¢µÄ֪ʶ¿â×÷ΪÊý¾ÝÖ§³Å£¬·µ»Ø¸øÓû§ÖÃÐŶÈ×î¸ßµÄ´ð°¸£¬¼«´óµØÌá¸ßÁËÒÔÓû§ÕæÊµÒâͼΪĿµÄµÄ¼ìË÷ЧÂÊ£¬´ïµ½×îÀíÏëµÄÈË»ú½»»¥×´Ì¬¡£

¡¡¡¡¸Ã×°ÖÿÉÓ¦ÓÃÓÚ¸÷´óÒ©·¿¡¢Ò½ÔºÒÔ¼°¼²²¡¿µ¸´ÖÐÐÄ£¬·½±ãÓÚÓû§»ò»¼ÕßÁ˽⼲²¡µÄ»ù±¾ÐÅÏ¢£¬Í¬Ê±ÌṩÏà¹Ø¼²²¡µÄÓÃÒ©½¨Ò鹩Óû§²Î¿¼¡£

¡¡¡¡±¾ÎÄÕë¶ÔÎÊ´ðϵͳÔÚÒ½ÁÆÁìÓòµÄÑо¿ÌṩÁËÁ¼ºÃµÄ½â¾ö·½°¸£¬½ÏÓÚ´«Í³¹Ø¼ü×Ö¼ìË÷µÄÎÊ´ðϵͳ£¬¸ÃϵͳµÄÓÅÊÆºÍ´´ÐÂÐÔÖ÷ÒªÌåÏÖÔÚÒÔϼ¸µã£º

¡¡¡¡1¡¢Ñз¢ÁËÒ»ÖÖÐÂÐÍ"ѰҽÎÊÒ©"ÓïÒôÎÊ´ð½»»¥×°Öã¬ÎªÓû§´ðÒɽâ»ó¡£ 2¡¢Ïà¶Ô»ùÓÚ»¥ÁªÍøËÑË÷ÒýÇæµÄ¿ª·ÅʽÁìÓò¼ìË÷£¬¸ÃÎÊ´ðϵͳ¿ÉÒÔÓ¦ÓÃÁìÓò֪ʶÌá¸ßÎÊÌâ·ÖÎöºÍ´ð°¸³éÈ¡µÄ׼ȷÂÊ¡£

¡¡¡¡3¡¢¸Ãϵͳ½¨Á¢ÁËÒ»¸öÀëÏß¡¢Ïà¶ÔÍ걸µÄ֪ʶ¿â£¬¿ÉÒÔÂú×ãÓû§ÔÚѰҽÎÊҩʱËùÉæ¼°µÄ´ó²¿·ÖÎÊ´ðÐèÇóÇÒʶ±ðËٶȽϿì¡£

¡¡¡¡¸Ãϵͳ¹¦ÄܵÄʵÏÖÖ÷ÒªÒÀ¿¿Ïà¹ØËã·¨µÄÈí¼þÉè¼Æ£¬Òò´ËËã·¨µÄÓÅ»¯ÔÚÓ¦ÓúóÆÚ¾ÍÏԵøñÍâÖØÒª£¬È»¶øÏµÍ³ÈÔ´æÔÚЩÐí²»×㣬Ö÷ÒªÌåÏÖÔÚϵͳµÄÓïÒôʶ±ð²¿ ·ÖÊÇÕë¶ÔÌØ¶¨È˶øÑÔ¡£±¾ÎÄͨ¹ýǰÆÚµÄÓïÒôѵÁ·ÐγÉÌØ¶¨È˵ÄÓïÒôÄ£ÐÍ£¬µ±ÏµÍ³ÒªÊ¶±ð³ö·ÇÌØ¶¨È˵ÄÓïÒôʱ¶¼ÒªÏȽøÐÐÒ»µ½Á½´ÎµÄÓïÒôѵÁ·£¬ÕâÑùÔÚʵ¼ÊÔËÓÃÖлáÏԵòÙ×÷·±Ëö¶ø²»¹»ÖÇÄÜ»¯¡£»ùÓÚϵͳµÄ²»×ãÖ®´¦£¬»¹ÍûÔÚÍùºóµÄ²»¶ÏѧϰÖÐÈ¡µÃ¸ÄÉÆ£¬¿ÉÒÔͨ¹ýÏòÀÏʦºÍר¼ÒÇë½Ì¡¢ÀûÓÃÍøÂç¸÷ÖÖѧϰ×ÊÔ´¡¢²ÎÓ빫˾»ò¿ÆÑÐÍŶÓÏîÄ¿µÈ;¾¶À´Ìá¸ß×ÔÉíµÄÄÜÁ¦£¬ÎÒÏàÐÅͨ¹ý¼á³Ö²»Ð¸µØÅ¬Á¦£¬Ò»¶¨Äܹ»Ñо¿³öÒ»ÖÖÓ¦ÓÃÓÚÒ½ÁÆÁìÓòµÄÔÚÏß¡¢ÖªÊ¶¿âÈ«ÃæµÄÖÇÄÜÎÊ´ð½»»¥×°Öá£Ä¿Ç°ÓïÒôʶ±ð¼¼ÊõÒѾ­Ï൱µÃ³ÉÊ죬Ҳ³É¹¦µØÓ¦ÓÃÓÚÈËÃǵĸ÷ÀàÉú»î³¡¾°£¬ÆäÖÐ×îÊÜÖõÄ¿µÄ»¹ÊÇÖÇÄÜ»úÆ÷ÈË£¬Ëü²»½öÄÜÍê³É¸÷ÖÖ¸´Ôӵ͝×÷ºÍ֪ʶÎʴ𣬻¹ÄÜÀûÓûúÆ÷ѧϰÀ´·á¸»×ÔÉíµÄ¼¼ÄÜ¡£ÕâÑùÖÇÄÜ»¯µÄÉ豸½«ºÜ´ó³Ì¶ÈÉÏÌá¸ßÉú²úЧÂʺÍÉú»îÖÊÁ¿£¬µ±È»ÕâÒ²ÊÇÎÒ½«À´ÎªÖ®·Ü¶·µÄÄ¿±êºÍ·½Ïò£¬Î´À´½«ÊǿƼ¼¸Ä±äÉú»îµÄʱ´ú£¡

ÖÂл

¡¡¡¡ÈýÄêµÄÑо¿ÉúÉúÑļ´½«½áÊø£¬ÆÚ¼äµÄУ԰Éú»î³äÂúÁËÎÂůºÍ¿ìÀÖ¡£ÔÚÕâÀïÎÒÒª¸ÐлÀÏʦÃǵÄϤÐÄÖ¸µ¼¡¢¼ÒÈËÃǵÄÇãÁ¦Ö§³ÖºÍͬѧÃǵÄÕæ³ÏÏà´ýʹÎҶȹýÁËÕâ¶Î³äʵµÄ´óѧËêÔ¡£

¡¡¡¡Ê×ÏÈ£¬ÎÒÒªÌØ±ð¸ÐлÎҵĵ¼Ê¦¡£µ¼Ê¦ÎªÈËÇ«ºÍ£¬Æ½Ò×½üÈË£¬¸øÎÒµÄѧϰºÍÉú»îÌṩÁ˺ܴóµÄ°ïÖú¡£Ã¿µ±ÎÒÔÚѧϰºÍÉú»îÖÐÓÐÀ§ÄÑʱ£¬¶¼½«µÚһʱ¼äµØÑ°Çóµ¼ Ê¦µÄ°ïÖú£¬¶øµ¼Ê¦Ò²»áµÚһʱ¼äµØ¸øÎÒÌṩ°ïÖú£»Ã¿µ±ÎÒ·¸´íʱ£¬µ¼Ê¦Ò²»áÄÍÐĵذïÎÒ·ÖÎöÎÊÌâµÄÔ­Òò£¬²¢ÒªÇóÎÒ½øÐÐÉî¿ÌµÄ×ÔÎÒ·´Ê¡¡£ÎÒµÄÂÛÎÄÒ²ÊÇÔÚµ¼Ê¦Ï¤ÐÄÖ¸µ¼ÏÂÍê³ÉµÄ£¬´ÓÂÛÎÄÑ¡Ì⵽д×÷£¬µ¼Ê¦¶¼¸øÓèÁËϸÐÄÖ¸µ¼£¬°ïÖúÎÒ·ÖÎöºÍÊáÀíÂÛÎĵÄ˼·£»ÔÚÎÒ³õ¸åÍê³ÉÖ®ºó£¬ÓÖÔÚ°Ùæ֮Öгé³öʱ¼ä¶ÔÎÒµÄÂÛÎĽøÐÐÐ޸İѹØ£¬¸øÎÒÌá³öºÜ¶à½¨ÉèÐÔµÄÖ¸µ¼Òâ¼û£¬Ê¹ÎÒÄÜ˳ÀûµÄÍê³ÉÂÛÎÄ¡£µ¼Ê¦ÑÏËàµÄ¿ÆÑ§Ì¬¶È¡¢ÑϽ÷µÄÖÎѧ¾«ÉñºÍ¾«ÒæÇ󾫵Ť×÷×÷·ç½«Ó°ÏìºÍ¼¤ÀøÎÒµÄÒ»Éú£¬Ëû¶ÔÎҵĹØÐĺͽ̻åÎÒ½«ÓÀÔ¶Ãú¼ÇÓÚÐÄ¡£½è´Ë»ú»á£¬ÎÒ½÷Ïòµ¼Ê¦ÖÂÒÔÉîÉîµØÐ»Òâ¡£

¡¡¡¡Æä´Î£¬ÎÒ»¹Òª¸Ðл±¾Ñ§ÔºËùÓÐרҵ¿ÎµÄÊÚ¿ÎÀÏʦ£¬ÕýÊÇÒòΪÓÐÁËËûÃÇÑϸñ¡¢ÎÞ˽¡¢¸ßÖÊÁ¿µÄ½Ìµ¼£¬ÎÒ²ÅÄÜÔÚÕâÈýÄêµÄѧϰ¹ý³ÌÖм³È¡×¨ÒµÖªÊ¶ºÍѸËÙÌáÉýÄÜÁ¦£¬´Ó¶øÎªÂÛÎĵÄд×÷´òÏÂÔúʵµÄÀíÂÛ»ù´¡£»ÎÒ»¹Òª¸ÐлÕâÈýÄêÀ´ÓëÎÒ¹²Í¬Ñ§Ï°ÓëÉú»îµÄѧԺ 17 ¼¶µÄͬ°àͬѧÃÇ£¬ÖÔÐĵظÐлËûÃÇÔÚѧϰÉϺÍÉú»îÖиøÓèÎҵĹÄÀøºÍ°ïÖú£¬Ô¸ÓÑÒ곤´æ£¡

¡¡¡¡Óë´Ëͬʱ£¬ÎÒÒª¸ÐлÎҵĸ¸Ä¸¡£ËûÃÇÓÀÔ¶ÊÇÎÒÉú»îÖмáÇ¿µÄºó¶Ü£¬ÊÇËûÃǵÄÎÞ˽¸¶³öÈÃÎÒÄÜ˳ÀûµØÍê³É˶ʿѧҵ¡£×îºó£¬ÎÒ»¹Ïë¶ÔÔÚ°Ùæ֮ÖÐÆÀÉóÕâÆªÂÛÎĵĸ÷λר¼Ò½ÌÊÚÖÂÒÔ³ÏÖ¿µÄлÒ⣡

¡¡¡¡Ö÷Òª²Î¿¼ÎÄÏ×

¡¡¡¡[1] Dang H T, Kelly D, Lin J J. Overview of the TREC 2007 Question Answering Track[C].TREC,2007,7:63.

¡¡¡¡[2] CuiH, Kan M Y, Chua T S. Soft pattern matching models for definitional question answering.

¡¡¡¡ACM Trans Inf Syst£¨TOIS£©[J]. Acm Transaction son Information Systems,2007,25£¨2£©£º107~108.

¡¡¡¡[3] Wang M, Smith N A, Mitamura T. What is the Jeopardy model? A quasi-synchronous grammar

¡¡¡¡for QA[C]. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language

¡¡¡¡Processing and Computational Natural Language Learning,2007:22~32.

¡¡¡¡[4] Bollacker K D, Evans C, Paritosh P, et al. Freebase:a collaboratively created graph database for

¡¡¡¡structuring human knowledge[C]. Sigmod Conference.ACM,2008.

¡¡¡¡[5] Yang Y, Yih W, Meek C. Wikiqa:a challenge dataset for open-domain question answering[C].

¡¡¡¡Proceedings of the 2015 conference on empirical methods in natural language processing,2015:2013~2018.

¡¡¡¡[6] Feng M, Xiang B, Glass M R, et al. Applying deep learning to answer selection:A study and an

¡¡¡¡open task[C]. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding£¨ASRU£©¡£ IEEE,2015:813~820.

¡¡¡¡[7] Tapaswi M, Zhu Y, Stiefelhagen R, et al. Movieqa:Understanding stories in movies through

¡¡¡¡question-answering[C]. Proceedings of the IEEE conference on computer vision and patternrecognition,2016:4631~4640.

¡¡¡¡[8] Yih W T, Chang M W, Meek C, et al. Question Answering Using Enhanced Lexical Semantic

¡¡¡¡Models[C]. Meeting of the Association for Computational Linguistics,2013.

¡¡¡¡[9] Yadav V, Sharp R, Surdeanu M. Sanity Check:a Strong Alignment and Information RetrievalBaseline for Question Answering[J],2018.

¡¡¡¡[10] É곿¡£ ÖвÝÒ©ÎÊ´ðϵͳµÄÉè¼ÆÓëʵÏÖ[D]. Õã½­´óѧ£¬2014.

¡¡¡¡[11] Pennington J, Socher R, Manning C. Glove: Global Vectors for Word Representation[C].

¡¡¡¡Conference on Empirical Methods in Natural Language Processing,2014.

¡¡¡¡[12] Katz B, Borchardt G C, Fdshin S. Natural Language Annotations for Question Answering[C].

¡¡¡¡FLAIRS Conference,2006:303~306.

¡¡¡¡[13] Yu L, Hermann K M, Blunsom P, et al. Deep learning for answer sentence selection[J]. ArXiv

¡¡¡¡preprint arXiv 2014:1412~1632.

¡¡¡¡[14] Severyn A, Moschitti A. Learning to Rank Short Text Pairs with Convolutional Deep Neural

¡¡¡¡Networks[C]. The 38th International ACM SIGIR Conference.ACM,2015.

¡¡¡¡[15] Tan M, Santos C D, Xiang B, et al. Improved Representation Learning for Question Answer

¡¡¡¡Matching[C]. Proceedings of the 54th Annual Meeting of the Association for Computational

¡¡¡¡Linguistics £¨Volume 1:Long Papers£©£¬2016.

¡¡¡¡[16] Yang L, Ai Q, Guo J, et al. ANMM:Ranking Short Answer Texts with Attention-Based Neural

¡¡¡¡Matching Model[C]. The 25th ACM International.ACM,2016.

¡¡¡¡[17] Frank A, Krieger H U, Xu F, et al. Question answering from structured knowledge resources[J].

¡¡¡¡Journal of Applied Logic,2007,5£¨1£©£º20~48.

¡¡¡¡[18] Liu K, Zhao J, He S, et al. Question Answering over Knowledge Bases[J].Intelligent SystemsIEEE,2015,30£¨5£©£º26~35.

¡¡¡¡[19] Fader A, Zettlemoyer L, Etzioni O. Open question answering over curated and extracted

¡¡¡¡knowledge bases[C]. Proceedings of the 20th ACM SIGKDD international conference of

¡¡¡¡Knowledge discovery and data mining.ACM,2014:1156~1165.

¡¡¡¡[20] Cui W, Xiao Y, Wang H, et al. KBQA:learning question answering over QA corpora and

¡¡¡¡knowledge bases[J]. ArXiv preprint arXiv2019:1903~2419.

¡¡¡¡[21] Dong L, Wei F, Zhou M, et al. Question answering over freebase with multi-column

¡¡¡¡convolutional neural networks[C]. Proceedings of the 53rd Annual Meeting of the Association

¡¡¡¡for Computational Linguistics and the 7th International Joint Conference on Natural Language

¡¡¡¡Processing £¨Volume 1:Long Papers£©¡£2015:260~269.

¡¡¡¡[22] Devlin J, Chang M W, Lee K, et al. Bert:Pre-training of deep bidirectional transformers for

¡¡¡¡language understanding[J]. ArXiv preprint arXiv2018:1810~4805.

¡¡¡¡[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. Advances in neural

¡¡¡¡information processing systems.2017:5998~6008.

¡¡¡¡[24] Garg S, Vu T, Moschitti A. Tanda:Transfer and adapt pre-trained transformer models for answer

¡¡¡¡sentence selection[J]. ArXiv preprint arXiv2019:1911~4118.

¡¡¡¡[25] He H, Lin J. Pairwise word interaction modeling with deep neural networks for semantic

¡¡¡¡similarity measurement[C]. Proceedings of the 2016 Conference of the North American

¡¡¡¡Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:937~948.

¡¡¡¡[26] Wang B, Liu K, Zhao J. Inner attention based recurrent neural networks for answerselection[C].

¡¡¡¡Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

¡¡¡¡£¨Volume 1:Long Papers£©¡£ 2016:1288~1297.

¡¡¡¡[27] Chakraborty N, Lukovnikov D, Maheshwari G, et al. Introduction to neural network based

¡¡¡¡approaches for question answering over knowledge graphs[J]. ArXiv preprintarXiv2019:1907~1936.

¡¡¡¡[28] Zhang D, Lee W S. Question classification using support vector machines[C]. International

¡¡¡¡Acm Sigir Conference on Research&Development in Informaion Retrieval,2003:26~32.

¡¡¡¡[29] Bae K, Ko Y.An effective category classication method based on a language model for question

¡¡¡¡category recommendation on a cQA service[C]. Proceedings of the 21st ACM international

¡¡¡¡conference on Information and knowledge management. ACM,2012:2255~2258.

¡¡¡¡[30] Huang Z H, Thint M, Qin Z. Question classification using head words and their hypernyms[C].

¡¡¡¡Proceedings of the Conference on Empirical Methods in Natural Language Processing.

¡¡¡¡Association for Computational Linguistics,2008:927~936.

¡¡¡¡[31] Zhang Y, Liu K, He S, et al. Question Answering over Knowledge Base with Neural Attention

¡¡¡¡Combining Global Knowledge Information[J]. 2016£¨2£©£º1533~1569.

¡¡¡¡[32] Berant J, Chou A, Frostig R, et al. Semantic parsing on freebase from question-answer pairs[C].

¡¡¡¡Proceedings of the 2013 conference on empirical methods in natural language processing.2013:1533~1544.

¡¡¡¡[33] Å£ÑåÇ壬 ³Â¿¡½Ü£¬ ¶ÎÀû¹ú£¬ µÈ¡£ ÖÐÎÄÎʾä·ÖÀàÌØÕ÷µÄÑо¿[J]. ¼ÆËã»úÓ¦ÓÃÓëÈí¼þ£¬2012,29£¨3£©£º108~111.

¡¡¡¡[34] Phan X H, Nguyen L M, Horiguchi S. Learning of classify short and sparsey text&web with

¡¡¡¡hidden topics from large-scale data collections[C]. Proceedings of the 17th internationalconference on World Wide Web.ACM,2008:91~100.

¡¡¡¡[35] »ôÑÓ¶¬£¬ Íõ¿µÆ½£¬ ÕŶ«ºü£¬ µÈ¡£ Ò»ÖÖ»ùÓÚ WordNet µÄ¶ÌÎı¾ÓïÒåÏàËÆÐÔËã·¨[J]. µç×Óѧ±¨£¬ 2012,40£¨3£©£º617~620.

¡¡¡¡[36] Liang P, Jordan M I, Dan K. Learning Dependency-Based Compositional Semantics[J].

¡¡¡¡Computational Linguistics,2011,39£¨2£©£º89~446.

¡¡¡¡[37] Zettlemoyer L S, Collins M. Learning to Map Sentences to Logical Form:structured

¡¡¡¡Classification with Probabilstic Categorial Grammars[J]. Eprint Arxiv,2012:658~666.

¡¡¡¡[38] Wong Y W, Mooney R J. Learning Synchronous Grammars for Semantic Parsing with Lambda

¡¡¡¡Calculus[J]. Annual Meeting,2007,960~967.

¡¡¡¡[39] Yih W, Chang M W, He X et al. Semantic parsing via staged query graphgeneration: Question

¡¡¡¡answering with knowledge base[C]. Association for Computational Linguistics£¨ACL£©£¬2015.

¡¡¡¡[40] Bordes A, Weston J, Usimier N. Open Question Answering with Weakly Supervised

¡¡¡¡Embedding Models[M]. Machine Learning and Knowledge Discovery in Databases. SpringerBerlin Heidelberg,2014:165~180.

 

£¨ÈçÄúÐèÒª²é¿´±¾Æª±ÏÒµÉè¼ÆÈ«ÎÄ£¬ÇëÄúÁªÏµ¿Í·þË÷È¡£©

Ïà¹ØÄÚÈÝ
Ïà¹Ø±êÇ©£ºµ¥Æ¬»ú±ÏÒµÉè¼Æ
ºÃÓÅÂÛÎ͍֯ÖÐÐÄÖ÷ҪΪÄúÌṩ´ú×ö±ÏÒµÉè¼Æ¼°¸÷רҵ±ÏÒµÂÛÎÄд×÷¸¨µ¼·þÎñ¡£ ÍøÕ¾µØÍ¼
ËùÓÐÂÛÎÄ¡¢×ÊÁϾùÔ´ÓÚÍøÉϵĹ²Ïí×ÊÔ´ÒÔ¼°Ò»Ð©ÆÚ¿¯ÔÓÖ¾£¬ËùÓÐÂÛÎĽöÃâ·Ñ¹©ÍøÓѼäÏ໥ѧϰ½»Á÷Ö®Óã¬ÇëÌØ±ð×¢ÒâÎð×öÆäËû·Ç·¨ÓÃ;¡£
ÈçÓÐÇÖ·¸ÄúµÄ°æÈ¨»òÆäËûÓÐËðÄúÀûÒæµÄÐÐΪ£¬ÇëÁªÏµÖ¸³ö£¬ÂÛÎ͍֯ÖÐÐÄ»áÁ¢¼´½øÐиÄÕý»òɾ³ýÓйØÄÚÈÝ!
亚洲 日韩 色 图网站